精英家教网 > 高中数学 > 题目详情
18.一个椭圆的半焦距为2,离心率e=$\frac{2}{3}$,则它的短轴长是(  )
A.3B.$\sqrt{5}$C.2$\sqrt{5}$D.6

分析 由椭圆的半焦距为2,离心率e=$\frac{2}{3}$,可得c=2,a=3,求出b,从而求出答案.

解答 解:∵椭圆的半焦距为2,离心率e=$\frac{2}{3}$,
∴c=2,a=3,
∴b=$\sqrt{5}$
∴2b=2$\sqrt{5}$.
故选:C.

点评 本题主要考查了椭圆的简单性质.属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.若圆锥的底面与顶点都在球O的球面上,且圆锥的底面半径为1,体积为π,则球O的表面积为(  )
A.$\frac{16π}{9}$B.$\frac{100π}{9}$C.25πD.36π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.椭圆M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)左、右焦点分别为F1、F2,P为椭圆M上任一点,且|PF1||PF2|最大值的取值范围是[2c2,3c2],其中c=$\sqrt{{a}^{2}-{b}^{2}}$,则椭圆离心率e取值的最大值为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知圆柱的底面半径为4,用与圆柱底面成30°角的平面截这个圆柱得到一个椭圆,建立适当的坐标系,求该椭圆的标准方程和离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,椭圆M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,直线x=±a和y=±b所围成的矩形ABCD的面积为32$\sqrt{3}$.
(1)求椭圆M的标准方程;
(2)已知N(1,0),若过点N的直线交椭圆M于E,F两点,且-$\frac{27}{2}$≤$\overrightarrow{NE}$•$\overrightarrow{NF}$≤-12,求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.我国政府对PM2.5采用如下标准:某市环保局从一年365天的市区PM2.5监测数据中,随机抽取10天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶).
PM2.5日均值m(微克/立方米)空气质量等级
  m<35一级
35≤m≤75二级
m>75超标
(1)求这10天数据的中位数;
(2)从这10天数据中任取4天的数据,记ξ为空气质量达到一级的天数,求ξ的分布列和期望;
(3)以这10天的数据来估计这一年365天的空气质量情况,并假定每天之间的空气质量相互不影响.记η为这一年中空气质量达到一级的天数,求η的平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若函数f(x)=4cos(2x-$\frac{π}{4}$)+5
(1)求函数f(x)在[-π,π]上单调递增区间;
(2)求出函数的对称中心和对称轴方程;
(3)求f(x)在区间[-$\frac{π}{4}$,$\frac{π}{4}$]的最值及相应x的值;
(4)若f(a)=3.且a∈[0,2π],求角a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知二面角α-l-β=60°,平面α内一点M到β的距离是$\sqrt{3}$,求M在β上的投影M′到棱l的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)=lnx+2x的图象在点(1,2)处的切线方程为3x-y-1=0.

查看答案和解析>>

同步练习册答案