精英家教网 > 高中数学 > 题目详情
(1)已知矩阵.在平面直角坐标系中,设直线2x-y+1=0在矩阵MN对应的变换作用下得到的曲线F,求曲线F的方程.
(2)在极坐标系中,已知圆C的圆心坐标为C (2,),半径R=,求圆C的极坐标方程.
(3)已知a,b为正数,求证:
【答案】分析:(1)利用矩阵的乘法法则求出MN,设出已知直线的一点坐标(x,y),求出这点在矩阵MN对应变换下的坐标(x',y')与设出坐标
(x,y)的关系,分别求出x和y,代入已知直线方程即可得到曲线F的方程;
(2)将圆心极坐标化为普通坐标,根据半径写出圆的标准方程,然后令x等于ρcosθ,y等于ρsinθ,代入化简即可得到圆C的极坐标方程;(3)由a与b都为正数,给不等式的左边乘以(a+b),去括号化简后,利用基本不等式求出最小值,然后把不等式变形即可得证.
解答:解:(1)由题设得
设(x,y)是直线2x-y+1=0上任意一点,
点(x,y)在矩阵MN对应的变换作用下变为(x',y'),
则有,即,所以
因为点(x,y)在直线2x-y+1=0上,从而2x'-(-y')+1=0,即:2x'+y'+1=0
所以曲线F的方程为2x+y+1=0;
(2)将圆心C(2,)化成直角坐标为(1,),半径R=
故圆C的方程为(x-1)2+(y-2=5.
再将C化成极坐标方程,得(ρcosθ-1)2+(ρcosθ-2=5.
化简,得ρ2-4ρcos(θ-)+1=0,此即为所求的圆C的方程;
(3)证明:∵a>0,b>0,所以

点评:此题考查学生会求一点在矩阵变换下的坐标,会根据条件求圆的极坐标方程,灵活运用基本不等式化简求值,是一道综合题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)已知矩阵M=
0
1
1
0
N=
0
1
-1
0
.在平面直角坐标系中,设直线2x-y+1=0在矩阵MN对应的变换作用下得到的曲线F,求曲线F的方程.
(2)在极坐标系中,已知圆C的圆心坐标为C (2,
π
3
),半径R=
5
,求圆C的极坐标方程.
(3)已知a,b为正数,求证:
1
a
+
4
b
9
a+b

查看答案和解析>>

科目:高中数学 来源: 题型:

【选做题】(1)已知矩阵A=
11
21
,向量β=
1
2
.求向量α,使得A2α=β.
(2)椭圆中心在原点,离心率为
1
2
,点P(x,y)是椭圆上的点,若2x-
3
y
的最大值为10,求椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知矩阵A=
33
24
,向量β=
6
8

(Ⅰ)求矩阵A的特征值和对应的特征向量;
(Ⅱ)求向量α,使得A2α=β.
(2)在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知点A、B的极坐标分别为(1,0)、(1,
π
2
)
,曲线C的参数方程为
x=rcosα
y=rsinα
为参数,r>0)
(Ⅰ)求直线AB的直角坐标方程;
(Ⅱ)若直线AB和曲线C只有一个交点,求r的值.
(3)设不等式|x-2|>1的解集与关于x的不等式x2-ax+b>0的解集相同.
(Ⅰ)求a,b的值;
(Ⅱ)求函数f(x)=a
x-3
+b
5-x
的最大值,以及取得最大值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分
(1)已知矩阵M=
12
21
,β=
1
7
,(Ⅰ)求M-1;(Ⅱ)求矩阵M的特征值和对应的特征向量;(Ⅲ)计算M100β.
(2)曲线C的极坐标方程是ρ=1+cosθ,点A的极坐标是(2,0),求曲线C在它所在的平面内绕点A旋转一周而形成的图形的周长.
(3)已知a>0,求证:
a2+
1
a2
-
2
≥a+
1
a
-2

查看答案和解析>>

同步练习册答案