【题目】广播电台为了了解某地区的听众对某个戏曲节目的收听情况,随机抽取了100名听众进行调查,下面是根据调查结果绘制的听众日均收听该节目的频率分布直方图,将日均收听该节目时间不低于40分钟的听众成为“戏迷”
(1)根据已知条件完成2×2列联表,并判断“戏迷”与性别是否有关?
“戏迷” | 非戏迷 | 总计 | |
男 | |||
女 | 10 | 55 | |
总计 |
附:K2= ,
P(K2≥k) | 0.05 | 0.01 |
k | 3.841 | 6.635 |
(2)将上述调查所得到的频率当作概率.现在从该地区大量的听众中,采用随机抽样的方法每次抽取1名听众,抽取3次,记被抽取的3名听众中“戏迷”的人数为X,若每次抽取的结果相互独立,求X的分布列,数学期望及方差.
【答案】
(1)解:由频率分布直方图可知在抽取的100人中,“戏迷”有(0.02+0.005)×10×100=25人,
“戏迷”有25人,
2×2列联表如下:
“戏迷” | 非戏迷 | 总计 | |
男 | 15 | 30 | 45 |
女 | 10 | 45 | 55 |
总计 | 25 | 75 | 100 |
将2×2列联表中的数据代入公式:
K2= ,
= ≈3.030<3.841,
故没有理由认为“戏迷”与性别有关
(2)解:由题可知抽到“戏迷”的概率为0.25,
由题意可知X~B(3, ),
X | 0 | 1 | 2 | 3 |
P |
∴数学期望E(X)=np=3× =
,
方差D(X)=np(1﹣p)=3× ×
=
【解析】(1)由频率分布直方图求得“戏迷”有25人,完成2×2列联表,根据2×2列联表,代入求临界值的公式,求出观测值,利用观测值同临界值表进行比较,K2≈3.030<3.841,故没有理由认为“戏迷”与性别有关;(2)由题意可知X~B(3, ),根据二项分布求得其分布列,数学期望及方差.
【考点精析】认真审题,首先需要了解离散型随机变量及其分布列(在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列).
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x﹣alnx+ .
(1)若a=1,求f(x)在x∈[1,3]的最值;
(2)求函数f(x)的单调区间;
(3)若存在x0∈[1,e],使得f(x0)<0成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数y=f(x)满足f(x﹣1)=2x+3a,且f(a)=7.
(1)求函数f(x)的解析式;
(2)若g(x)=xf(x)+λf(x)+x在[0,2]上最大值为2,求实数λ的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某次水下科研考察活动中,需要潜水员潜入水深为60米的水底进行作业,根据以往经验,潜水员下潜的平均速度为(米/单位时间),每单位时间的用氧量为
(升),在水底作业10个单位时间,每单位时间用氧量为0.9(升),返回水面的平均速度为
(米/单位时间),每单位时间用氧量为1.5(升),记该潜水员在此次考察活动中的总用氧量为
(升).
(1)求关于
的函数关系式;
(2)若 ,求当下潜速度
取什么值时,总用氧量最少.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两名跳高运动员一次试跳2米高度成功的概率分别为0、7、0、6,且每次试跳成功与否相互之间没有影响,求:
(1)甲试跳三次,第三次才能成功的概率;
(2)甲、乙两人在第一次试跳中至少有一人成功的概率;
(3)甲、乙各试跳两次,甲比乙的成功次数恰好多一次的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f (x)= 的定义域集合是A,函数g(x)=lg[x2﹣(2a+1)x+a2+a]的定义域集合是B.
(1)求集合A,B.
(2)若A∪B=B,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com