精英家教网 > 高中数学 > 题目详情

【题目】为数列的前项和,若为常数)对任意恒成立.

1)若,求的值;

2)若,且.

①求数列的通项公式;

②若数列满足,且,求证:数列为等比数列.

【答案】1;(2)①,②证明见解析.

【解析】

1)由题可得数列为等比数列,则可得,进而答案可求;

2)①,利用求数列的通项公式;

②由①可得,则,又,可求出,计算,进一步,则可得,代入计算可得,得证.

1)因为,所以,所以数列为等比数列.

所以,所以.

2)①.

时,,解得(舍去).

时,

化简得:.

又因为,所以,所以数列为等差数列,所以.

②因为,所以当时,.

又因为,所以.

时,,解得.

因为,所以,两式相除得,.

因为,所以,两式相除得,

所以.

又因为,所以,即.

所以数列为等比数列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,侧面为菱形,的中点,为等腰直角三角形,,且.

(1)证明:平面.

(2)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“科技引领,布局未来”科技研发是企业发展的驱动力量。年,某企业连续年累计研发投入搭亿元,我们将研发投入与经营投入的比值记为研发投入占营收比,这年间的研发投入(单位:十亿元)用右图中的折现图表示,根据折线图和条形图,下列结论错误的使( )

A. 年至年研发投入占营收比增量相比年至年增量大

B. 年至年研发投入增量相比年至年增量小

C. 该企业连续年研发投入逐年增加

D. 该企业来连续年来研发投入占营收比逐年增加

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合,设整除整除,令表示集合所含元素的个数.

1)写出的值;

2)当时,写出的表达式,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面为正方形,.

(1)证明:面

(2)若与底面所成的角为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商家统计了去年两种产品的月销售额(单位:万元),绘制了月销售额的雷达图,图中点表示产品2月份销售额约为20万元,点表示产品9月份销售额约为25万元.

根据图中信息,下面统计结论错误的是(

A.产品的销售额极差较大B.产品销售额的中位数较大

C.产品的销售额平均值较大D.产品的销售额波动较小

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是两个平面,是两条直线,下列命题错误的是(

A.如果,那么.

B.如果,那么.

C.如果,那么.

D.如果内有两条相交直线与平行,那么.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系过椭圆 )焦点的直线两点 的中点的斜率为9.

(Ⅰ)求的方程

(Ⅱ)的左右顶点 上的两点,若,求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的函数.

1)讨论的单调区间

2)当时,存在,使得对任意均有,求实数M的最大值.

查看答案和解析>>

同步练习册答案