【题目】已知函数
(1)当时,求的极值;
(2)若有两个不同的极值点 ,求的取值范围;
【答案】(1)极小值(2)
【解析】试题分析:(1)当时,代入求导得出结果(2)对求导,设,在对求导,讨论、时的单调性,确定取得极限时的值,然后求,即可算出结果
解析:(1)当时,,,令,可得,故上单调递增,同理可得在上单调递减,
故在处有极小值;
(2)依题意可得,有两个不同的实根.
设,则有两个不同的实根,,
若,则,此时为增函数,故至多有1个实根,不符合要求;
若,则当时,,当时,,
故此时在上单调递增,在上单调递减,的最大值为
,
又当时,,当时,,故要使有两个实根,则,得. (或作图象知要使有两个实根,则)
设的两根为 ,当时,,此时;
当时,,此时;当时,,此时.
故为的极小值点,为的极大值点, 符合要求.
综上所述:的取值范围为.(分离变量的方法也可以)
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(其中为参数),曲线.以原点为极点,轴的正半轴为极轴建立极坐标系.
(1)求曲线、的极坐标方程;
(2)射线与曲线、分别交于点(且均异于原点)当时,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如下图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4.设圆C的半径为1,圆心在l上.
(1)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线的方程;
(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知是抛物线的焦点,关于轴的对称点为,曲线上任意一点满足;直线和直线的斜率之积为.
(1)求曲线的方程;
(2)过且斜率为正数的直线与抛物线交于两点,其中点在轴上方,与曲线交于点,若的面积为的面积为,当时,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆()的左、右焦点分别为,,过作垂直于轴的直线与椭圆在第一象限交于点,若,且.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知点关于轴的对称点在抛物线上,是否存在直线与椭圆交于,使得的中点落在直线上,并且与抛物线相切,若直线存在,求出的方程,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数()在同一半周期内的图象过点, , ,其中为坐标原点, 为函数图象的最高点, 为函数的图象与轴的正半轴的交点, 为等腰直角三角形.
(1)求的值;
(2)将绕原点按逆时针方向旋转角,得到,若点恰好落在曲线()上(如图所示),试判断点是否也落在曲线()上,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-5 不等式选讲
已知函数f(x)=|x-1|-2|x+1|的最大值为m.
(1)求m;
(2)若a,b,c∈(0,+∞),a2+2b2+c2=2m,求ab+bc的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com