精英家教网 > 高中数学 > 题目详情

【题目】已知正项数列满足则下列正确的是(

A.时,递增,递增

B.时,递增,递减

C.时,递增,递减

D.时,递减,递减

【答案】B

【解析】

,画出函数的图像,利用数形结合的观点即可得到答案.

解:设,单调递减,画出图像如图所示:

由图像知,所以对于

时,不妨确定的位置,根据,把标到图上,如图所示:

图像知,,所以,所以,一直根据图像推下去可得:对于数列,所以奇数项,所有偶数项.

从作图过程可以看出:

所以可得:数列递增数列,递减数列.

时,不妨确定的位置,根据,把标到图上,如图所示:

图像知,,所以,一直根据图像推下去可得:对于数列,所以奇数项,所有偶数项.

从图像可以看出:

所以:数列递减数列,递增数列.

故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】从甲、乙两种树苗中各抽测了10株树苗的高度,其茎叶图数据如图.根据茎叶图,下列描述正确的是(

A.甲种树苗的中位数大于乙种树苗的中位数,且甲种树苗比乙种树苗长得整齐

B.甲种树苗的中位数大于乙种树苗的中位数,但乙种树苗比甲种树苗长得整齐

C.乙种树苗的中位数大于甲种树苗的中位数,且乙种树苗比甲种树苗长得整齐

D.乙种树苗的中位数大于甲种树苗的中位数,但甲种树苗比乙种树苗长得整齐

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为了调查学生数学素养的情况,从初中部、高中部各随机抽取100名学生进行测试.初中部的100名学生的成绩(单位:分)的频率分布直方图如图所示.

高中部的100名学生的成绩(单位:分)的频数分布表如下:

测试分数

频数

5

20

35

25

15

把成绩分为四个等级:60分以下为级,60分(含60)到80分为级,80分(含80)到90分为级,90分(含90)以上为.

1)根据已知条件完成下面的列联表,据此资料你是否有99%的把握认为学生数学素养成绩“级”与“所在级部”有关?

不是

合计

初中部

高中部

合计

注:,其中.

0.050

0.010

0.001

3.841

6.635

10.828

2)若这个学校共有9000名高中生,用频率估计概率,用样本估计总体,试估计这个学校的高中生的数学素养成绩为级的人数,并估计数学素养成绩的平均分(用组中值代表本组分数);

3)把初中部的级同学编号为,高中部的级同学编号为,从初中部级、高中部级中各选一名同学,求这两名同学的编号奇偶性相同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费和年销售量)数据作了初步处理,得到下面的散点图及一些统计量的值.

46.6

563

6.8

289.8

1.6

1.469

108.8

表中

1)根据散点图判断,哪一个适宜作为年销售量y关于年宣传费x的回归方类型?给出判断即可,不必说明理由

2)根据(1)的判断结果及表中数据,建立y关于x的回归方程;

3)已知这种产品的年利润zxy的关系为根据(2)的结果回答下列问题:

①年宣传费时,年销售量及年利润的预报值是多少?

②年宣传费x为何值时,年利润的预报值最大?

附:对于一组数据,其回归线的斜率和截距的最小二乘估计分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为等差数列,分别是下表第一、二、三行中的某一个数,且中的任何两个数都不在下表的同一列.

第一列

第二列

第三列

第一行

第二行

4

6

9

第三行

12

8

7

请从①,②的三个条件中选一个填入上表,使满足以上条件的数列存在;并在此存在的数列中,试解答下列两个问题

1)求数列的通项公式;

2)设数列满足,求数列的前n项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,原点为,椭圆的动弦过焦点且不垂直于坐标轴,弦的中点为,过且垂直于线段的直线交射线于点

(1)证明:点在定直线上;

(2)当最大时,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,点的极坐标为,直线的极坐标方程为

(1)求直线的直角坐标方程与曲线的普通方程;

(2)若是曲线上的动点,为线段的中点,求点到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是直角梯形,,侧面底面,且为棱上一点,且

1)求证:平面

2)若二面角的余弦值为,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,设曲线在点处的切线与圆相切.

1)求函数的单调区间;

2)求函数上的值域.

查看答案和解析>>

同步练习册答案