精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=$\frac{\sqrt{3}}{2}$cos2ωx+$\frac{1}{2}$sin2ωx+$\frac{\sqrt{3}}{2}$(ω>0)的图象在y轴右侧的第一个最高点的横坐标为$\frac{π}{12}$.
(1)求ω的值;
(2)若A∈(0,π),且f(A)=$\frac{\sqrt{3}}{2}$,求A的值.

分析 (I)化简可得f(x)=sin(2ωx+$\frac{π}{3}$)+$\frac{\sqrt{3}}{2}$,依题意得2ω×$\frac{π}{12}$+$\frac{π}{3}$=$\frac{π}{2}$,解方程可得;
(II)由(I)知f(A)=sin(A+$\frac{π}{3}$)+$\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{2}$,可得sin(A+$\frac{π}{3}$)=0,结合A的范围可得.

解答 解:(I)化简可得f(x)=$\frac{\sqrt{3}}{2}$cos2ωx+$\frac{1}{2}$sin2ωx+$\frac{\sqrt{3}}{2}$
=sin(2ωx+$\frac{π}{3}$)+$\frac{\sqrt{3}}{2}$,依题意得2ω×$\frac{π}{12}$+$\frac{π}{3}$=$\frac{π}{2}$,
解得ω=1;
(II)由(I)知f(x)=sin(x+$\frac{π}{3}$)+$\frac{\sqrt{3}}{2}$,
∴f(A)=sin(A+$\frac{π}{3}$)+$\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{2}$,
∴sin(A+$\frac{π}{3}$)=0,
结合A的范围可解得A=$\frac{2π}{3}$.

点评 本题考查三角函数恒等变换,涉及三角函数的图象和性质,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.下列命题:
①“若a2<b2,则a<b”的否命题;
②“若a>1,则ax2-2ax+a+3>0的解集为R”的逆否命题;
③“全等三角形面积相等”的逆命题;
④“若$\sqrt{3}$x(x≠0)为有理数,则x为无理数”的逆否命题.
其中真命题序号为②④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.定义某种运算S=a?b,运算原理如图所示,则式子:$sin\frac{5π}{3}?ln\frac{1}{e}+{(\frac{1}{3})^{-\frac{1}{2}}}?lg100$的值是(  )
A.$\sqrt{3}$B.$2\sqrt{3}$C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.随机地从区间[0,1]任取两数,分别记为x、y,则x2+y2≤1的概率P=(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{π}{4}$D.1-$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.直线x=2被圆(x+1)2+y2=25所截得的弦长等于(  )
A.2$\sqrt{6}$B.4C.4$\sqrt{6}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.正三棱锥的侧棱长为2$\sqrt{3}$,侧棱与底面所成的角为60°,则该棱锥的体积为(  )
A.$\frac{\sqrt{3}}{4}$B.$\frac{3\sqrt{3}}{4}$C.$\frac{9\sqrt{3}}{4}$D.$\frac{27\sqrt{3}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,△ABC的外接圆为⊙O,延长CB至Q,再延长QA至P,使得QC2-QA2=BC•QC.
(Ⅰ)求证:QA为⊙O的切线;
(Ⅱ)若AC恰好为∠BAP的平分线,AB=10,AC=15,求QA的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.下列几个命题
①奇函数的图象一定通过原点
②函数y=$\sqrt{{x}^{2}-1}+\sqrt{1-{x}^{2}}$是偶函数,但不是奇函数
③函数f(x)=ax-1+3的图象一定过定点P,则P点的坐标是(1,4)
④若f(x+1)为偶函数,则有f(x+1)=f(-x-1)
⑤若函数f(x)=$\left\{\begin{array}{l}{{a}^{x}(x>1)}\\{(4-\frac{a}{2})x+2(x≤1)}\end{array}\right.$在R上的增函数,则实数a的取值范围为[4,8)
其中正确的命题序号为③⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.下列几个命题中真命题的序号是(2)(4).
(1)已知函数f(x)的定义域为[2,5),则f(2x-1)的定义域为[3,9);
(2)函数$y=\sqrt{{x^2}-1}+\sqrt{1-{x^2}}$是偶函数,也是奇函数;
(3)若f(x+1)为偶函数,则f(x+1)=f(-x-1);
(4)已知函数f(x)=x2+2ax+2在区间[-5,5]上是单调增函数,则实数a≥5.

查看答案和解析>>

同步练习册答案