精英家教网 > 高中数学 > 题目详情

【题目】设椭圆,直线经过点,直线经过点,直线直线,且直线分别与椭圆相交于两点和两点.

()分别为椭圆的左、右焦点,且直线轴,求四边形的面积;

()若直线的斜率存在且不为0,四边形为平行四边形,求证:;

()()的条件下,判断四边形能否为矩形,说明理由.

【答案】() ()证明见解析;()不能,证明见解析

【解析】

()计算得到故,计算得到面积.

() ,联立方程得到,计算,同理,根据得到,得到证明.

() 中点为,根据点差法得到,同理,故,得到结论.

(),故.

故四边形的面积为.

(),则,故

,故

同理可得

,故

,故.

()中点为,则

相减得到,即

同理可得:的中点,满足

,故四边形不能为矩形.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数,以坐标原点为极点,轴的正半轴为极轴,取相同长度单位建立极坐标系,曲线的极坐标方程为

1)求曲线的极坐标方程和曲线的普通方程;

2)设射线与曲线交于不同于极点的点,与曲线交于不同于极点的点,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)若 ,求曲线 在点 处的切线方程;

(2)若 处取得极小值,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在极坐标系中,直线的极坐标方程为,现以极点为原点,极轴为轴的非负半轴建立平面直角坐标系,曲线的参数方程为为参数).

(1)求直线的直角坐标方程和曲线的普通方程;

(2)若曲线为曲线关于直线的对称曲线,点分别为曲线、曲线上的动点,点坐标为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线与椭圆交于不同的两点.

1)若线段的中点为,求直线的方程;

2)若的斜率为,且过椭圆的左焦点的垂直平分线与轴交于点,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,过椭圆右焦点的直线与椭圆交于两点,当直线轴垂直时,.

1)求椭圆的标准方程;

2)当直线轴不垂直时,在轴上是否存在一点(异于点),使轴上任意点到直线的距离均相等?若存在,求点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的多面体的底面为直角梯形,四边形为矩形,且分别为的中点.

1)求证:平面

2)求直线与平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】公元2020年春,我国湖北武汉出现了新型冠状病毒,人感染后会出现发热、咳嗽、气促和呼吸困难等,严重的可导致肺炎甚至危及生命.为了尽快遏制住病毒的传播,我国科研人员,在研究新型冠状病毒某种疫苗的过程中,利用小白鼠进行科学试验.为了研究小白鼠连续接种疫苗后出现症状的情况,决定对小白鼠进行做接种试验.该试验的设计为:①对参加试验的每只小白鼠每天接种一次;②连续接种三天为一个接种周期;③试验共进行3个周期.已知每只小白鼠接种后当天出现症状的概率均为,假设每次接种后当天是否出现症状与上次接种无关.

1)若某只小白鼠出现症状即对其终止试验,求一只小白鼠至多能参加一个接种周期试验的概率;

2)若某只小白鼠在一个接种周期内出现2次或3症状,则在这个接种周期结束后,对其终止试验.设一只小白鼠参加的接种周期为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我们把有相同数字相邻的数叫“兄弟数”,现从由一个1,一个2,两个3,两个4这六个数字组成的所有不同的六位数中随机抽取一个,则抽到“兄弟数”的概率为______.

查看答案和解析>>

同步练习册答案