分析 (1)设出$\overrightarrow{c}$的坐标,结合已知列式求解;
(2)由$\overrightarrow{a}$+2$\overrightarrow{b}$与2$\overrightarrow{a}$-$\overrightarrow{b}$垂直,可得$\overrightarrow{a}$+2$\overrightarrow{b}$与2$\overrightarrow{a}$-$\overrightarrow{b}$的数量积为0,代入数量积公式求解.
解答 解:(1)设$\overrightarrow{c}=(x,y)$,由$\overrightarrow{c}$∥$\overrightarrow{a}$,|$\overrightarrow{c}$|=2$\sqrt{5}$,
得$\left\{\begin{array}{l}{x-2y=0}\\{{x}^{2}+{y}^{2}=20}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=4}\\{y=2}\end{array}\right.$或$\left\{\begin{array}{l}{x=-4}\\{y=-2}\end{array}\right.$.
∴$\overrightarrow{c}=(4,2)$或$\overrightarrow{c}=(-4,-2)$;
(2)∵$\overrightarrow{a}$+2$\overrightarrow{b}$与2$\overrightarrow{a}$-$\overrightarrow{b}$垂直,
∴($\overrightarrow{a}$+2$\overrightarrow{b}$)•(2$\overrightarrow{a}$-$\overrightarrow{b}$)=0,
即$2{\overrightarrow{a}}^{2}+3\overrightarrow{a}•\overrightarrow{b}-2{\overrightarrow{b}}^{2}=0$,
∴$2|\overrightarrow{a}{|}^{2}+3|\overrightarrow{a}||\overrightarrow{b}|cosθ-2|\overrightarrow{b}{|}^{2}=0$.
则$2×5+3×\sqrt{5}×\frac{\sqrt{5}}{2}cosθ-2×\frac{5}{4}=0$,
∴cosθ=-1,
∵θ∈[0,π],∴θ=π.
点评 本题考查平面向量的数量积运算,考查数量积的坐标表示,是基础的计算题.
科目:高中数学 来源: 题型:选择题
A. | {0,1} | B. | {0,1,2} | C. | {1,2,3} | D. | {x|0≤x<3} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com