精英家教网 > 高中数学 > 题目详情

【题目】如图,某地一天中6时至14时的温度变化曲线近似满足函数y=Asin(ωx+φ)+B(其中 ),那么这一天6时至14时温差的最大值是°C;与图中曲线对应的函数解析式是

【答案】20; ,x∈[6,14]
【解析】解:(1)由图示,这段时间的最大温差是30﹣10=20℃,(2)图中从6时到14时的图象是函数y=Asin(ωx+)+b的半个周期,
=14﹣6,解得ω=
由图示,A= (30﹣10)=10,B= (10+30)=20,
这时,y=10sin( φ)+20,
将x=6,y=10代入上式,可取 φ=
综上,所求的解析式为 ,x∈[6,14].
所以答案是:20; ,x∈[6,14]
【考点精析】利用三角函数的最值对题目进行判断即可得到答案,需要熟知函数,当时,取得最小值为;当时,取得最大值为,则

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=
(1)判断函数f(x)的奇偶性;
(2)判断并证明f(x)的单调性;
(3)求关于x的不等式f(2x﹣1)+f(x+3)>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,命题椭圆C1 表示的是焦点在轴上的椭圆,命题,直线与椭圆C2 恒有公共点.

(1)若命题“”是假命题,命题“”是真命题,求实数的取值范围.

(2)若假时,求椭圆C1椭圆C2的上焦点之间的距离d的范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:第一组,第二组,…,第五组,如图是按上述分组方法得到的频率分布直方图.

(Ⅰ)根据频率分布直方图,估计这50名学生百米测试成绩的中位数和平均数(精确到0.1).

(Ⅱ)若从第一、五组中随机取出三名学生成绩,设取自第一组的个数为,求的分布列,期望及方差.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(α)=
(1)若α为第二象限角且f(α)=﹣ ,求 的值;
(2)若5f(α)=4f(3α+2β).试问tan(2α+β)tan(α+β)是否为定值(其中α≠kπ+ ,α+β≠kπ+ ,2α+β≠kπ+ ,3α+2β≠kπ+ ,k∈Z)?若是,请求出定值;否则,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直三棱柱中, ,分别为的中点.

1)求证: 平面

2)求三棱锥的体积(锥体的体积公式,其中为底面面积, 为高)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为 .

1)求数列的通项公式;

2)令设数列的前项和为

3)令恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,圆,过点的动直线与圆交于两点,线段的中点为为坐标原点.

1)求的轨迹方程;

2)当时,求的方程及的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,ABCD﹣A1B1C1D1是正方体,E,F,G,H,M,N分别是所在棱的中点,则下列结论错误的有
①GH和MN是平行直线;GH和EF是相交直线
②GH和MN是平行直线;MN和EF是相交直线
③GH和MN是相交直线;GH和EF是异面直线
④GH和EF是异面直线;MN和EF也是异面直线.

查看答案和解析>>

同步练习册答案