精英家教网 > 高中数学 > 题目详情
设函数f(θ)=sinθ+cosθ,其中,角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤θ≤π。
(1)若点P的坐标为,求f(θ)的值。
(2)若点P(x,y)为平面区域Ω:上的一个动点,试确定角θ的取值范围,并求函数f(θ)的最小值和最大值。
解:(1)由点P的坐标和三角函数的定义可得
于是
(2)作出平面区域(即三角形区域ABC)如图,其中A(1,0),B(1,1),C(0,1)
于是


故当,即时,f(θ)取得最大值,且最大值等于2;
,即θ=0时,f(θ)取得最小值,且最小值等于1。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=sin2x-sin(2x-
π
6
).

(1)求函数f(x)的值域;
(2)设A,B,C为△ABC的三个内角,若cosB=
1
3
f(
C
2
)=-
1
4
,且C为锐角,求sinA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(α)=sinα+
3
cosα,其中,角α的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤α≤π.
(1)若P点的坐标为(
3
,1),求f(α)的值;
(2)若点P(x,y)为平面区域
x+y≥1
y≥x
y≤1
上的一个动点,试确定角α的取值范围,并求函数f(α)的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•顺河区一模)设函数f(x)=sin2x-sin(2x-
π
2
)

(I)求函数f(x)的最小正周期和最大值;
(Ⅱ)△ABC的内角A.B、C的对边分别为a、b、c,c=3,f(
C
2
)=
1
4
,若向量
m
=(1,sinA)与
n
=(2,sinB)共线,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
3
sinx-
sin(
π
2
-2x)sin(
π
2
-x)
cos(π+x)

(Ⅰ)求f(x)的最值;
(Ⅱ)当θ∈(0,  
π
2
)
时,若f(θ)=1,求θ的值.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年江西赣州四所重点中学高三上学期期末联考文数学试卷(解析版) 题型:选择题

设函数f(x)=sin(wx+)+sin(wx-)(w>0)的最小正周期为π,则(    )

A.f(x)在(0, )上单调递增  B.f(x)在(0, )上单调递减

C.f(x)在(0, )上单调递增  D.f(x)在(0, )上单调递减

 

查看答案和解析>>

同步练习册答案