【题目】求下列函数的单调区间.
(1)f(x)=(x∈[-2,4]);
(2)y=.
【答案】(1) [-2,4]为函数的单调递减区间(2) 单调递减区间是(-∞,-1),(-1,+∞).
【解析】
试题分析:(1)根据复合函数单调性法则确定函数单调性,再根据定义区间确定单调区间,(2)先确定函数定义域,再根据分式函数单调性确定单调区间.
试题解析:(1)已知函数的定义域为4-x≥0,即(-∞,4],而[-2,4]为其定义域的子区间,又y=与y=4-x在[-2,4]上的单调性相同,且均为减函数,
故[-2,4]为函数的单调递减区间.
(2)函数y=的定义域为(-∞,-1)∪(-1,+∞),
∵函数y=在(-∞,-1)上是减函数,在(-1,+∞)上是减函数,
∴函数y=的单调递减区间是(-∞,-1)(-1,+∞).
科目:高中数学 来源: 题型:
【题目】某城市100户居民的月平均用电量(单位:度)以[160,180)[180,200)[200,220)[220,240)[240,260)[260,280)[280,300)分组的频率分布直方图如图所示:
(1)求直方图中的值;
(2)用分层抽样的方法从[260,280)和[280,300)这两组用户中确定6人做随访,再从这6人中随机抽取2人做问卷调查,则这2人来自不同组的概率是多少?
(3)求月平均用电量的众数和中位数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题p:k2﹣8k﹣20≤0,命题q:方程1表示焦点在x轴上的双曲线.
(1)命题q为真命题,求实数k的取值范围;
(2)若命题“p∨q”为真,命题“p∧q”为假,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆,点P是曲线上的动点,过点P分别向圆N引切线(为切点)
(1)若,求切线的方程;
(2)若切线分别交y轴于点,点P的横坐标大于2,求的面积S的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的焦点在x轴上,中心在坐标原点,离心率,椭圆上的点到左焦点的距离的最大值为.
(1)求椭圆的标准方程;
(2)过椭圆的右焦点F作与坐标轴不垂直的直线l,交椭圆于A、B两点,设点是线段OF上的一个动点,且,求m的取值范围;
(3)设点C是点A关于x轴的对称点,在x轴上是否存在一个定点N,使得C、B、N三点共线?若存在,求出定点N的坐标,若不存在,请说明理由;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在极坐标系中,曲线的极坐标方程为.现以极点为原点,极轴为轴的非负半轴建立平面直角坐标系,直线的参数方程为(为参数).
(1)求曲线的直角坐标系方程和直线的普通方程;
(2)点在曲线上,且到直线的距离为,求符合条件的点的直角坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥,平面,,,且,,.
(1)取中点,求证:平面;
(2)求直线与所成角的余弦值.
(3)在线段上,是否存在一点,使得二面角的大小为,如果存在,求与平面所成角,如果不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com