精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率为,短轴长为2.

(1)求椭圆的标准方程;

(2)设直线与椭圆交于两点, 为坐标原点,若,求原点到直线的距离的取值范围.

【答案】(1);(2)

【解析】试题分析:(1)由已知求得,再由椭圆离心率及隐含条件求得,则椭圆方程可求;(2)联立直线方程与椭圆方程,化为关于x的一元二次方程,由判别式大于0求得,再由,可得,从而求得的范围,再由点到直线的距离公式求出原点到直线的距离,则取值范围可求.

试题解析:(1)设焦距为,由已知 ,又,解得椭圆的标准方程为

(2)设 ,联立,依题意, ,化简得,①, ,若,则,即,即,化简得,②,①② 原点到直线的距离,又原点到直线的距离的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列四个结论,其中正确的个数为( ). ①已 ,则
②过原点作曲线 的切线,则切线方程为 (其中e为自然对数的底数);
③已知随机变 ,则
④已知n为正偶数,用数学归纳法证明等式 时,若假设 时,命题为真,则还需利用归纳假设再证明 时等式成立,即可证明等式对一切正偶数n都成立.
⑤在回归分析中,常用 来刻画回归效果,在线性回归模型中, 表示解释变量对于预报变量变化的贡献率 越接近1,表示回归的效果越好.
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4―4:坐标系与参数方程]

在平面直角坐标系中,以坐标原点为极点, 轴的正半轴为极轴建立极坐标系.已知直线的参数方程为;曲线的极坐标方程为;曲线的参数方程为为参数).

(1)求直线的直角坐标方程、曲线的直角坐标方程和曲线的普通方程;

(2)若直线与曲线曲线在第一象限的交点分别为,求之间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

(Ⅰ)求上的单调区间;

(Ⅱ)求为自然对数的底数)上的最大值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直线AB经过☉O上的点C,并且OA=OB,CA=CB,☉O交直线OB于E,D两点,连接EC,CD.
(1)求证:直线AB是☉O的切线;
(2)若tan∠CED= ,☉O的半径为3,求OA的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中,且

(1)当时,求函数的单调区间;

(2)设,若存在极大值,且对于的一切可能取值, 的极大值均小于,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}是等差数列,若 <﹣1,且它的前n项和Sn有最大值,那么当Sn取的最小正值时,n=(
A.11
B.17
C.19
D.21

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fx=ax2lnx.

)若fx)在x=2时有极值,求实数a的值和fx)的极大值;

)若fx)在定义域上是减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形ABCD所在的平面和平面互相垂直,等腰梯形中, , 分别为的中点, 为底面的重心.

(Ⅰ)求证: ∥平面

(Ⅱ)求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案