分析 (1)联立方程,求得直线经过的点的坐标,再利用点斜式求得直线的方程;
(2)分类讨论:当直线过原点时,可设直线的方程为y=kx,当直线不过原点时,可设直线的方程为$\frac{x}{a}+\frac{y}{a}=1$,代点(1,2),可得a的值,则直线l的方程可求.
解答 解:(1)联立直线l1和l2得$\left\{\begin{array}{l}{2x-3y+1=0}\\{4x+y+9=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=-2}\\{y=-1}\end{array}\right.$,
∴l1与l2的交点坐标为(-2,-1),
直线2x-y+7=0的斜率为k=2,∴kl=2.
∴l的方程为:y+1=2(x+2)即2x-y+3=0.
(2)当直线过原点时,可设直线的方程为y=kx,
代点(1,2)可得k=2,故方程为y=2x,
化为一般式可得2x-y=0;
当直线不过原点时,可设直线的方程为$\frac{x}{a}+\frac{y}{a}=1$,
∵l过点(1,2),∴$\frac{1}{a}+\frac{2}{a}=1$,解得a=3.
∴l的方程为:$\frac{x}{3}+\frac{y}{3}=1$即x+y-3=0.
综上可得所求直线的方程为:x+y-3=0或2x-y=0.
点评 本题考查直线的截距式方程,涉及分类讨论的思想,解题时易漏解,属基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 22 | B. | 18 | C. | 26 | D. | -24 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com