【题目】某公司为抓住经济发展的契机,调查了解了近几年广告投入对销售收益的影响,在若干销售地区分别投入4万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示),由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.
(1)根据频率分布直方图计算图中各小长方形的宽度;并估计该公司分别投入4万元广告费用之后,对应地区销售收益的平均值(以各组的区间中点值代表该组的取值);
(2)该公司按照类似的研究方法,测得另外一些数据,并整理得到如表:
广告投入x(单位:万元) | 1 | 2 | 3 | 4 | 5 |
销售收益y(单位:万元) | 2 | 3 | 2 | 7 |
由表中的数据显示,x与y之间存在着线性相关关系,请将(1)的结果填入空白栏,根据表格中数据求出y关于x的回归真线方程,并估计该公司下一年投入广告费多少万元时,可使得销售收益达到8万元?
参考公式:最小二乘法估计分别为,.
【答案】(1)宽度为:2, 平均值:5(2)空白栏中填5,,投入万元
【解析】
(1)由频率分布直方图各个小长方形的面积总和为1,建立方程,即可求得结论.利用组中值,求出对应销售收益的平均值;
(2)利用公式求出即可计算y关于x的回归方程.
(1)设长方形的宽度为m,由频率分布直方图各小长方形面积总和为1,
可知(0.08+0.1+0.14+0.12+0.04+0.02)m=1,所以m=2.
小组依次是[0,2),[2,4),[4,6),[6,8),[8,10),[10,12),
其中点分别为1,3,5,7,9.11
对应的频率分别为0.16,0.20,0.28,0.24,0.08,0.04.
故可估计平均值为1×0.16+3×0.20+5×028+7×0.24+9×0.08+11×0.04=5.
(2)空白栏中填5.
由题意可知,3,3.8,69,55,
所以1.2,3.8﹣1.2×3=0.2.
所以关于x的回归方程为
取,得到.
科目:高中数学 来源: 题型:
【题目】对于数列,若存在常数M,使得对任意,与中至少有一个不小于M,则记作,那么下列命题正确的是( ).
A.若,则数列各项均大于或等于M;
B.若,则;
C.若,,则;
D.若,则;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥中,底面是正方形,顶点在底面的射影是底面的中心,且各顶点都在同一球面上,若该四棱锥的侧棱长为,体积为4,且四棱锥的高为整数,则此球的半径等于( )(参考公式:)
A. 2B. C. 4D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,右焦点为,左顶点为A,右顶点B在直线上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设点P是椭圆C上异于A,B的点,直线交直线于点,当点运动时,判断以为直径的圆与直线PF的位置关系,并加以证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点P(x,y)是平面内的动点,定点F(1,0),定直线l:x=﹣1与x轴交于点E,过点P作PQ⊥l于点Q,且满足 .
(1)求动点P的轨迹t的方程;
(2)过点F作两条互相垂直的直线,分别交曲线t于点A,B,和点C,D.设线段AB和线段CD的中点分别为M和N,记线段MN的中点为K,点O为坐标原点,求直线OK的斜率k的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com