精英家教网 > 高中数学 > 题目详情
已知命题p:不等式|x-1|+|x+2|>m的解集为R;命题q:f(x)=log(5-2m)x为减函数.则p是q成立的
 
条件.
分析:由命题p成立不能推出命题q成立,但由命题q成立能推出命题p成立,依据充分条件、必要条件的定义得出结论.
解答:解:由命题p:不等式|x-1|+|x+2|>m的解集为R,|x-1|+|x+2|的最小值为3,可得 m<3.
故5-2m可能大于1,也可能小于1,不能推出命题q:f(x)=log(5-2m)x为减函数.
当命题q:f(x)=log(5-2m)x为减函数成立时,0<5-2m<1,2<m<
5
2

由于,|x-1|+|x+2|的最小值为3,故不等式|x-1|+|x+2|>m恒成立,故命题p成立.
综上,p是q成立的 必要不充分条件,
故答案为:必要不充分.
点评:本题考查绝对值的意义,对数函数的单调性,充分条件、必要条件的定义.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

21、已知命题p:不等式|x|+|x+1|>m的解集为R,命题q:函数f(x)=x2-2mx+1在(2,+∞)上是增函数.若p∨q为真命题,p∧q为假命题,则实数m的取值范围是
{m|1≤m≤2}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:不等式|x-1|>m-1的解集为R,命题q:f(x)=(5-2m)x是(-∞,+∞)上的增函数,若p或q为真命题,p且q为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题P:不等式ex>m的解集为R,命题q:f(x)=
2-m
x
在区间(0,+∞)上是减函数,若命题“p或q”为真,命题“p且q”为假,则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:不等式|x|+|x-1|>a的解集为R,命题q:f(x)=-(5-2a)x是减函数,若p,q中有且仅有一个为真命题,则实数a的取值范围是
[1,2)
[1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:不等式-2x+m>1,x∈[-1,0]恒成立;命题q:函数y=log2[4x2+4(m-2)x+1]的定义域为(-∞,+∞),若“p∨q”为真,“p∧q”为假,求m的取值范围.

查看答案和解析>>

同步练习册答案