精英家教网 > 高中数学 > 题目详情

【题目】葫芦岛市某高中进行一项调查:2012年至2016年本校学生人均年求学花销(单位:万元)的数据如下表:

年份

2012

2013

2014

2015

2016

年份代号

1

2

3

4

5

年求学花销

3.2

3.5

3.8

4.6

4.9

(1)求关于的线性回归方程;

(2)利用(1)中的回归方程,分析2012年至2016年本校学生人均年求学花销的变化情况,并预测该地区2017年本校学生人均年求学花销情况.

附:回归直线的斜率和截距的最小二乘法估计公式分别为:

【答案】(1) . (2)5.35万元

【解析】试题分析:

(1)由题意求得结合线性回归方程的计算公式可得关于的线性回归方程是.

(2)利用回归方程进行预测可得2017年本校学生人均年求学花销为5.35万元

试题解析:

由题意知: ,所以

,所以线性回归方程为.

(2)由(1)知回归直线方程为b>0,所以2012到2016年本校学生人均年求学花销逐年增加,平均每年增加0.45万元。

x=6时,

故预测2017年本校学生人均年求学花销为5.35万元

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校对高二年段的男生进行体检,现将高二男生的体重数据进行整理后分成6组,并绘制部分频率分布直方图(如图所示).已知第三组的人数为200.根据一般标准,高二男生体重超过属于偏胖,低于属于偏瘦.观察图形的信息,回答下列问题:

(1)求体重在内的频率,并补全频率分布直方图;

(2)用分层抽样的方法从偏胖的学生中抽取人对日常生活习惯及体育锻炼进行调查,则各组应分别抽取多少人?

(3)根据频率分布直方图,估计高二男生的体重的中位数与平均数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司做了用户对其产品满意度的问卷调查,随机抽取了20名用户的评分,得到图3所示茎叶图,对不低于75的评分,认为用户对产品满意,否则,认为不满意,

(Ⅰ)根据以上资料完成下面的2×2列联表,若据此数据算得,则在犯错的概率不超过5%的前提下,你是否认为“满意与否”与“性别”有关?

附:

(Ⅱ) 估计用户对该公司的产品“满意”的概率;

(Ⅲ) 该公司为对客户做进一步的调查,从上述对其产品满意的用户中再随机选取2人,求这两人都是男用户或都是女用户的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—4:坐标系与参数方程.

已知曲线的参数方程为为参数,以直角坐标系原点为极点,轴正半轴为极轴建立极坐标系.

1求曲线的极坐标方程;

2若直线的极坐标方程为,求直线被曲线截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x﹣﹣(a+2)lnx,其中实数a≥0.

(1)若a=0,求函数f(x)在x∈[1,3]上的最值;

(2)若a>0,讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我们用圆的性质类比球的性质如下:

p:圆心与弦(非直径)中点的连线垂直于弦; q:球心与小圆截面圆心的连线垂直于截面.

p:与圆心距离相等的两条弦长相等; q:与球心距离相等的两个截面圆的面积相等.

p:圆的周长为Cd(d是圆的直径); q:球的表面积为Sd2(d是球的直径).

p:圆的面积为S=R·πd(R,d是圆的半径与直径); q:球的体积为V=R·πd2(R,d是球的半径与直径).

则上面的四组命题中,其中类比得到的q是真命题的有( )个

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

)证明:

)证明:当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,(

(1)若,求曲线处的切线方程.

(2)对任意,总存在,使得(其中的导数)成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求的最大值;

(2)当时,函数有最小值. 的最小值为,求函数的值域.

查看答案和解析>>

同步练习册答案