精英家教网 > 高中数学 > 题目详情
4.已知F为双曲线$C:\frac{x^2}{3}-\frac{y^2}{3}=1$的一个焦点,则点F到C的一条渐近线的距离为(  )
A.$\sqrt{3}$B.3C.$2\sqrt{3}$D.6

分析 求出双曲线的a,b,c,可设F($\sqrt{6}$,0),设双曲线的一条渐近线方程,运用点到直线的距离公式计算即可得到.

解答 解:双曲线$C:\frac{x^2}{3}-\frac{y^2}{3}=1$的a=$\sqrt{3}$,b=$\sqrt{3}$,c=$\sqrt{6}$,
则可设F($\sqrt{6}$,0),
设双曲线的一条渐近线方程为y=x,
则F到渐近线的距离为d=$\frac{\sqrt{6}}{\sqrt{2}}$=$\sqrt{3}$,
故选A.

点评 本题考查双曲线的方程和性质,考查渐近线方程的运用,考查点到直线的距离公式,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.若[x]表示不超过x的最大整数,则[lg2]+[lg3]+…+lg[2017]+[lg$\frac{1}{2}$]+[lg$\frac{1}{3}$]+…+[lg$\frac{1}{2017}$]=-2013.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}的前n项和为Sn,${a_1}=-\frac{2}{3}$,满足${S_n}+\frac{1}{S_n}+2={a_n}(n≥2)$.
(1)计算S1,S2,S3,猜想Sn的一个表达式(不需要证明).
(2)设${b_n}=\frac{S_n}{{{n^2}+n}}$,数列{bn}的前n项和为Tn,求证:${T_n}>-\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若3m=b,则${log_{3^2}}b$=(  )
A.2mB.$\frac{m}{2}$C.m2D.$\sqrt{m}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某工厂生产产生的废气必须经过过滤后才能排放,已知在过滤过程中,废气中的污染物含量p(单位:毫克/升)与过滤时间t(单位:小时)之间的关系为:$p(t)={p_0}{e^{-kt}}$(式中的e为自然对数的底,p0为污染物的初始含量).过滤1小时后检测,发现污染物的含量减少了$\frac{1}{5}$.
(Ⅰ)求函数关系式p(t);
(Ⅱ)要使污染物的含量不超过初始值的$\frac{1}{1000}$,至少还需过滤几小时?(lg2≈0.3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在平面直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}x=cosφ\\ y=sinφ\end{array}$(φ为参数),曲线C2的参数方程为$\left\{\begin{array}{l}x=acosφ\\ y=bsinφ\end{array}$(a>b>0,φ为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,射线l:θ=α与C1,C2各有一个交点,当α=0时,这两个交点间的距离为2,当α=$\frac{π}{2}$时,这两个交点重合.
(Ⅰ)分别说明C1,C2是什么曲线,并求a与b的值;
(Ⅱ)设当α=$\frac{π}{4}$时,l与C1,C2的交点分别为A1,B1,当α=-$\frac{π}{4}$时,l与C1,C2的交点分别为A2,B2,求直线A1 A2、B1B2的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.分形几何学是美籍法国数学家伯努瓦B•曼德尔布罗特(Benoit B.Mandelbrot)在20世纪70年代创立的一门新学科,它的创立,为解决传统众多领域的难题提供了全新的思路.如图是按照分形的规律生长成的一个树形图,则第10行的空心圆的个数是21.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在直棱柱ABC-A1B1C1中,AB=AC=4,∠BAC=90°,E为BC的中点.
(1)求证:平面AB1E⊥平面BCC1B1
(2)若侧面ABB1A1为正方形,求证;BC1⊥平面AB1E.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4. 如图,点M($\sqrt{3}$,$\sqrt{2}$)在椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上,且点M到两焦点的距离之和为6.
(1)求椭圆的方程;
(2)设MO(O为坐标原点)处置的直线交椭圆于A,B(A,B不重合),求$\overrightarrow{OA}$•$\overrightarrow{OB}$的取值范围.

查看答案和解析>>

同步练习册答案