精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=cos2x+sinxcosx-$\frac{1}{2}$,x∈R.
(Ⅰ)求函数f(x)的图象的对称轴方程;
(Ⅱ)求函数f(x)的单调增区间;
(Ⅲ)求f(x)在区间[0,$\frac{π}{2}$]上的最小值.

分析 (Ⅰ)化简函数,即可求函数f(x)的图象的对称轴方程;
(Ⅱ)令$2k{π}-\frac{π}{2}≤2x+\frac{π}{4}≤2k{π}+\frac{π}{2}$,k∈Z,可求函数f(x)的单调增区间;
(Ⅲ)f(x)在区间$[{0,\;\frac{π}{8}})$上单调递增,在$({\frac{π}{8},\;\frac{π}{2}}]$上单调递减,即可求f(x)在区间[0,$\frac{π}{2}$]上的最小值.

解答 解:(Ⅰ)$f(x)={cos^2}x+sinxcosx-\frac{1}{2}$=$\frac{1}{2}cos2x+\frac{1}{2}sin2x=\frac{{\sqrt{2}}}{2}sin(2x+\frac{π}{4})$------------(4分)
其对称轴方程为$x=\frac{π}{8}+\frac{{k{π}}}{2}$,k∈Z;---------------(6分)
(Ⅱ)令$2k{π}-\frac{π}{2}≤2x+\frac{π}{4}≤2k{π}+\frac{π}{2}$,k∈Z,
得$k{π}-\frac{3π}{8}≤x≤k{π}+\frac{π}{8}$,k∈Z,
故f(x)的单调递增区间为$[{k{π}-\frac{{3{π}}}{8},k{π}+\frac{π}{8}}]$k∈Z--------(9分)
(Ⅲ)f(x)在区间$[{0,\;\frac{π}{8}})$上单调递增,在$({\frac{π}{8},\;\frac{π}{2}}]$上单调递减,
故f(x)在$x=\frac{π}{2}$时取得最小值为$-\frac{1}{2}$-----------------(12分)

点评 本题考查三角函数的化简,考查三角函数的图象与性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知y=f(x)是定义在R上的奇函数,且当x<0时f(x)=$\left\{\begin{array}{l}{-(x+3)^{2}+2,x<-2}\\{1,-2≤x<0}\end{array}\right.$则方程f(x-2)=-$\frac{2}{3}$(x-2)的实数根的个数为(  )
A.8B.7C.6D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数$f(x)=2sinxcosx+2\sqrt{3}{cos^2}x$.
(1)求函数f(x)的单调区间;
(2)当$x∈[{-\frac{π}{3},\frac{π}{3}}]$时,求函数f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知向量$\overrightarrow{a}$=(-1,6),$\overrightarrow{b}$=(3,-2),则$\overrightarrow{a}$+$\overrightarrow{b}$=(  )
A.(4,4)B.(2,4)C.(-2,4)D.(-4,4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在0°~180°范围内,与-950°终边相同的角是130°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设相量$\overrightarrow{a}$=(2,3),$\overrightarrow{b}$=(-1,2),若m$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-2$\overrightarrow{b}$垂直,则实数m等于(  )
A.-$\frac{6}{5}$B.$\frac{6}{5}$C.$\frac{9}{10}$D.-$\frac{9}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知向量$\overrightarrow{m}$=(2$\sqrt{3}$cosx,cosx),$\overrightarrow{n}$=(sinx,2cosx)(x∈R),设函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$-1.
(Ⅰ)求函数f(x)的单调减区间;
(Ⅱ)已知锐角△ABC的三个内角分别为A,B,C,若f(A)=2,B=$\frac{π}{4}$,边AB=3,求边BC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知全集U=R,集合A={x|1<2x-1<5},B={y|y=($\frac{1}{2}$)x,x≥-2}.
(1)求(∁UA)∩B;
(2)若集合C={x|a-1<x-a<1},且C⊆A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=2017x+log2017($\sqrt{{x}^{2}+1}$+x)-2017-x+1,则关于x的不等式f(2x+1)+f(x+1)>2的解集为(  )
A.(-$\frac{1}{2017}$,+∞)B.(-2017,+∞)C.(-$\frac{2}{3}$,+∞)D.(-2,+∞)

查看答案和解析>>

同步练习册答案