精英家教网 > 高中数学 > 题目详情

【题目】己知六个函数:①;②;③;④;⑤;⑥,从中任选三个函数,则其中既有奇函数又有偶函数的选法共有_______种.

【答案】

【解析】

逐项判断函数的奇偶性,根据计数原理,即可求得答案.

对于①,因为,定义域为且满足,故为偶函数;

对于②,因为,定义域为且满足,故为偶函数;

对于③,因为,定义域为,故非奇非偶函数;

对于④,因为,定义域为且满足,故为奇函数;

对于⑤,因为,定义域为且满足,故为奇函数;

对于⑥,因为,根据函数图象可知为非奇非偶函数.

综上所述,函数中奇函数的有④⑤,偶函数的有①②,③⑥为非奇非偶函数.

任选3个函数,既有奇函数又有偶函数的情况分类讨论:

当选1奇和偶时,种;

当选2奇和偶时,种;

当选1奇,偶,非奇非偶时,种.

一共有种选法.

故答案为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,将方格纸中每个小方格染三种颜色之一,使得每种颜色的小方格的个数相等.若相邻两个小方格的颜色不同,称他们的公共边为“分割边”,则分割边条数的最小值为( )

A.33B.56C.64D.78

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的导函数.

1)若,求处的切线方程;

2)若可上单调递增,求的取值范围;

3)求证:当在区间内存在唯一极大值点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:如果存在实常数ab,使得函数总满足,我们称这样的函数型函数”.请解答以下问题:

1)已知函数型函数,求pb的值;

2)已知函数型函数,求一组满足条件的kma的值,并说明理由.

3)已知函数是一个型函数,且是增函数,若在区间上的图像上的点,求点M随着变化可能到达的区域的面积的大小,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

如图,长方体ABCDA1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BEEC1.

1)证明:BE⊥平面EB1C1

2)若AE=A1E,求二面角BECC1的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某高中学生的体能测试结果中,随机抽取100名学生的测试结果,按体重分组得到如图所示的频率分布直方图.

1)若该校约有的学生体重不超过标准体重,试估计的值,并说明理由;

2)从第345组中用分层抽样的方法抽取6名学生进行了第二次测试,现从这6人中随机抽取2人进行日常运动习惯的问卷调查,求抽到4组的人数的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱台中,GH分别为上的点,平面平面.

1)证明:平面平面

2)若,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数.

1)若,讨论函数的零点个数情况;

2)若,对于,存在,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的极值;

(2)若,其中为自然对数的底数,求证:函数有2个不同的零点;

(3)若对任意的恒成立,求实数的最大值.

查看答案和解析>>

同步练习册答案