精英家教网 > 高中数学 > 题目详情

【题目】已知a∈R,函数f(x)=ln(x+a)﹣x,曲线y=f(x)与x轴相切. (Ⅰ)求f(x)的单调区间;
(Ⅱ)是否存在实数m使得 恒成立?若存在,求实数m的值;若不存在,说明理由.

【答案】解:(Ⅰ)设切点为(x0 , 0),则f′(x)= , 依题意 ,即
解得
∴f(x)=ln(x+1)﹣x,f′(x)=
当x变化时,f′(x)与f(x)的变化情况如下表:

x

(﹣1,0)

0

(0,+∞)

f′(x)

+

0

f(x)

单调递增

极大值

单调递减

∴f(x)在(﹣1,0)上单调递增,在(0,+∞)上单调递减;
(Ⅱ)存在m= ,理由如下:
等价于 ,或
令g(x)=f(x)﹣mx(1﹣ex)=ln(x+1)﹣x﹣mx(1﹣ex),x∈(﹣1,+∞),
则g′(x)= ,g″(x)=
① 若m=
当﹣1<x<0时,﹣ <﹣1,m(x+2)ex<1,∴g″(x)<0;
当x>0时,﹣ >﹣1,m(x+2)ex>1,∴g″(x)>0,
∴g′(x)在单调递减区间为(﹣1,0),单调递增为(0,+∞),
又g′(0)=0,∴g′(x)≥0,当且仅当x=0时,g′(x)=0,
从而g(x)在(﹣1,+∞)上单调递增,又g(0)=0,
,即 >m(1﹣ex)成立.
②若m ,∵g″(0)=2m﹣1>0,
g″( )= <﹣4m2+m( )<0,
∴存在x1∈( ,0),使得g″(x1)=0,
∵g″(x)在(﹣1,0)上单调递增,
∴当x∈(x1 , 0)时,g″(x)>0,g′(x)在(x1 , 0)上递增,
又g′(0)=0,∴当x∈(x1 , 0)时,g′(x)<0,
从而g(x)在(x1 , 0)上递减,又g(0)=0,
∴当x∈(x1 , 0)时,g(x)>0,
此时 >m(1﹣ex)不恒成立;
③若m< ,同理可得 >m(1﹣ex)不恒成立.
综上所述,存在实数m=
【解析】(Ⅰ)设出切点坐标,由 即可求得a值,把a值代入函数解析式,得到当x变化时,f′(x)与f(x)的变化情况表,由图表可得f(x)的单调区间;(Ⅱ) 等价于 ,或 ,令g(x)=f(x)﹣mx(1﹣ex)=ln(x+1)﹣x﹣mx(1﹣ex),x∈(﹣1,+∞),求其二阶导数,然后对m分类讨论得答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知某圆圆心在x轴上,半径长为5,且截y轴所得线段长为8,求该圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x+ +lnx,a∈R. (Ⅰ)若f(x)在x=1处取得极值,求a的值;
(Ⅱ)若f(x)在区间(1,2)上单调递增,求a的取值范围;
(Ⅲ)讨论函数g(x)=f'(x)﹣x的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高三数学竞赛初赛考试结束后,对考生成绩进行统计(考生成绩均不低于90分,满分150分),将成绩按如下方式分为六组,第一组.如图为其频率分布直方图的一部分,若第四、五、六组的人数依次成等差数列,且第六组有4人.
(1)请补充完整频率分布直方图,并估计这组数据的平均数M;
(2)现根据初赛成绩从第四组和第六组中任意选2人,记他们的成绩分别为x,y.若|x﹣y|≥10,则称此二人为“黄金帮扶组”,试求选出的二人为“黄金帮扶组”的概率P1
(3)以此样本的频率当作概率,现随机在这组样本中选出3名学生,求成绩不低于120分的人数ξ的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数上是单调递增函数,则的取值范围是______.

【答案】

【解析】

又函数单调递增,

上恒成立,

上恒成立。

又当时,

故实数的取值范围是

答案

点睛对于导函数和函数单调性的关系要分清以下结论:

1)当时,若在区间D上单调递增);

2)若函数在区间D上单调递增),在区间D上恒成立即解题时可将函数单调性的问题转化为的问题,但此时不要忘记等号

型】填空
束】
19

【题目】某珠宝店丢了一件珍贵珠宝,以下四人中只有一人说真话,只有一人偷了珠宝.甲:我没有偷;乙:丙是小偷;丙:丁是小偷;丁:我没有偷.根据以上条件,可以判断偷珠宝的人是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,圆C的极坐标方程为: .以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线的参数方程为: (为参数).

(1)求圆C的直角坐标方程和直线l的普通方程;

(2)当θ∈(0,π)时,求直线l与圆C的公共点的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面ABEF⊥平面ABC,四边形ABEF为矩形,AC=BC.O为AB的中点,OF⊥EC. (Ⅰ)求证:OE⊥FC:
(Ⅱ)若 = 时,求二面角F﹣CE﹣B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,函数的最小值为.

(1)求

(2)是否存在实数同时满足下列条件:

的定义域为时, 值域为?若存在, 求出的值若不存在, 说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P是抛物线x2=4y上的动点,点P在x轴上的射影是Q,点A(8,7),则|PA|+|PQ|的最小值为(
A.7
B.8
C.9
D.10

查看答案和解析>>

同步练习册答案