【题目】如图,是圆的直径,垂直圆所在的平面,是圆上的一点.
(1)求证:平面 平面;
(2)若,求直线与平面所成角的正弦值.
科目:高中数学 来源: 题型:
【题目】如图,等腰三角形PAD所在平面与菱形ABCD所在平面互相垂直,已知点E,F,M,N分别为边BA,BC,AD,AP的中点.
(1)求证:AC⊥PE;
(2)求证:PF∥平面BNM.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国南宋时期著名的数学家秦九韶在其著作《数书九章》中,提出了已知三角形三边长求三角形的面积的公式,与著名的海伦公式完全等价,由此可以看出我国古代已具有很高的数学水平,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上.以小斜幂乘大斜幂减上,余四约之,为实.一为从隔,开平方得积.”若把以上这段文字写成公式,即,其中a、b、c分别为内角A、B、C的对边.若,,则面积S的最大值为
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π),对于下列四个命题:
A.M中所有直线均经过一个定点 |
B.存在定点P不在M中的任一条直线上 |
C.对于任意整数n(n≥3),存在正n边形,其所有边均在M中的直线上 |
D.M中的直线所能围成的正三角形面积都相等 |
其中真命题的代号是 (写出所有真命题的代号).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线上一点到其焦点的距离为.
(1)求与的值;
(2)若斜率为的直线与抛物线交于、两点,点为抛物线上一点,其横坐标为1,记直线的斜率为,直线的斜率为,试问:是否为定值?并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了实现绿色发展,避免浪费能源,某市政府计划对居民用电实行阶梯收费的方法.为此,相关部门随机调查了20户居民六月分的月用电量(单位:kwh)和家庭月收入(单位:方元)月用电量数据如下18,63,72,82,93,98,106,10,18,130,134,139,147,163,180,194,212,237,260,324家庭月收入数据如下0.21,0.24,0.35,0.40,0.52,0.60,0.58,0.65,0.65,0.63,0.68,0.80,0.83,0.93,0.97,0.96,1.1,1.2,1.5,1.8
(1)根据国家发改委的指示精神,该市实行3阶阶梯电价,使7%的用户在第一档,电价为0.56元/kwh,20%的用户在第二档,电价为0.61元/kwh,5%的用户在第三档,电价为0.86元/kwh,试求出居民用电费用Q与用电量x间的函数关系式;
(2)以家庭月收入t为横坐标,电量x为纵坐标作出散点图(如图)求出x关于t的回归直线方程(系数四舍五入保留整数);
(3)小明家庭月收入7000元,按上述关系,估计小明家月支出电费多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com