精英家教网 > 高中数学 > 题目详情
2.函数$f(x)=ln(x+2)-\frac{2}{x}$的零点所在的区间是(  )
A.(3,4)B.(2,e)C.(0,1)D.(1,2)

分析 函数f(x)的零点所在区间需满足的条件是函数在区间端点的函数值符号相反.

解答 解:∵f(1)=ln3-2<lne2-2=0,
f(2)=ln4-1>lne-1=0,
∴函数f(x)的零点所在区间是 (1,2),
故选:D.

点评 本题考查函数的零点的判定定理,连续函数在某个区间存在零点的条件是函数在区间端点处的函数值异号.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.△ABC中,角A,B,C所对应的边分别为b,b,c,若$\frac{a-c}{b-c}$=$\frac{sinB}{sinA+sinC}$.
(1)求角A的大小;
(2)若△ABC的面积为S,求$\frac{S}{\overrightarrow{AB}•\overrightarrow{AC}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(1)若2a=5b=10,求$\frac{1}{a}+\frac{1}{b}$的值;
(2)计算:${[{({0.064^{\frac{1}{5}}})^{-2.5}}]^{\frac{2}{3}}}-\root{3}{{3\frac{3}{8}}}-{π^0}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=2sin(ωx+φ)(ω>0,0<φ<π)的图象如图所示,则cosφ=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.一个梯形采用斜二测画法作出其直观图,则其直观图的面积是原来梯形面积的(  )
A.$\frac{\sqrt{2}}{4}$倍B.$\frac{1}{2}$倍C.$\frac{\sqrt{2}}{2}$倍D.$\sqrt{2}$倍

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.计算下列各式的值
(Ⅰ)lg24-lg3-lg4+lg5
(Ⅱ)${(\root{3}{3}•\sqrt{2})^6}+{(\sqrt{3\sqrt{3}})^{\frac{4}{3}}}-\root{4}{2}×{8^{0.25}}-{(2015)^0}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知方程x2+ax+2b=0(a∈R,b∈R),其一根在区间(0,1)内,另一根在区间(1,2)内,则$\frac{b-3}{a-1}$的取值范围为$(\frac{1}{2},\frac{3}{2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在一个底面半径为1,高为3的圆柱形容器中放满水,再把容器倾斜倒出$\frac{1}{3}$水,此时圆柱体的母线与水平面所成角的大小是45°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知f(x)是定义在实数集R上的可导函数,且其导函数为f′(x),若f′(x)<f(x)在R上恒成立,则不等式ef(x)>f(1)ex上的解集为(  )
A.(1,+∞)B.(-∞,1)C.(-1,1)D.(-∞,1)∪(1,+∞)

查看答案和解析>>

同步练习册答案