【题目】在△ABC中,A=30°,BC=2 ,D是AB边上的一点,CD=2,△BCD的面积为4,求AC的长.
【答案】【解答】解:由题意可得 CBCDsin∠BCD=4,即 ×2 ×2 sin∠BCD=4,解得 sin∠BCD= .
①当∠BCD 为锐角时,cos∠BCD= .
△BCD中,由余弦定理可得 BD= =4.
△BCD中,由正弦定理可得 ,即 ,故 sinB= .
在△ABC中,由正弦定理可得 ,即 ,解得 AC=4.
②当∠BCD 为钝角时,cos∠BCD=﹣ .
△BCD中,由余弦定理可得 BD= =4 .
△BCD中,由正弦定理可得 ,即 ,故 sinB= .
在△ABC中,由正弦定理可得 ,即 ,解得 AC=2 .
综上可得 AC=4或2 ,
【解析】由△BCD的面积为4,求得sin∠BCD 的值,进而求得cos∠BCD 的值,△BCD中,由余弦定理可得BD 的值,△BCD中,由正弦定理求得sinB 的值.再在△ABC中,由正弦定理求得AC的长.
【考点精析】解答此题的关键在于理解正弦定理的定义的相关知识,掌握正弦定理:,以及对余弦定理的定义的理解,了解余弦定理:;;.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2cosx(sinx﹣cosx)+1,x∈R.
(1)求函数f(x)的单调递增区间;
(2)将函数y=f(x)的图象向左平移 个单位后,再将图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的最大值及取得最大值时的x的集合.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C的极坐标方程是ρ=2,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为(t为参数).
(1)写出直线l的普通方程与曲线C的直角坐标方程;
(2)设曲线C经过伸缩变换得到曲线,设M(x,y)为上任意一点,求的最小值,并求相应的点M的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)讨论函数的单调性;
(2)当时,若函数的导函数的图象与轴交于, 两点,其横坐标分别为, ,线段的中点的横坐标为,且, 恰为函数的零点,求证: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={x|1≤x≤5},B={x|log2x>1}
(1)分别求A∩B,(RB)∪A;
(2)已知集合C={x|2a﹣1≤x≤a+1},若CA,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】销售甲、乙两种商品所得利润分别是y1 , y2万元,它们与投入资金x万元的关系分别为y1=m +a,y2=bx,(其中m,a,b都为常数),函数y1 , y2对应的曲线C1 , C2如图所示.
(1)求函数y1与y2的解析式;
(2)若该商场一共投资10万元经销甲、乙两种商品,求该商场所获利润的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com