精英家教网 > 高中数学 > 题目详情
2.圆心为(1,2),且与y轴相切的圆的方程是(  )
A.(x+1)2+(y+2)2=4B.(x-1)2+(y-2)2=4C.(x+1)2+(y+2)2=1D.(x-1)2+(y-2)2=1

分析 由所求圆与y轴相切,得到圆心的横坐标的绝对值为圆的半径,进而由圆心C的坐标和求出的半径写出圆的标准方程即可

解答 解:∵圆心C的坐标为(1,2),且所求圆与y轴相切,
∴圆的半径r=1,
则所求圆的方程为(x-1)2+(y-2)2=1.
故选:D.

点评 此题考查了直线与圆的位置关系,涉及的知识有:圆的标准方程,点到直线的距离公式,当直线与圆相切时,圆心到直线的距离等于圆的半径,其中根据题意得到圆心横坐标的绝对值为圆的半径是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.△ABC中,a:b:c=2:$\sqrt{6}$:($\sqrt{3}$+1),则最大角的余弦值为$\frac{\sqrt{6}-\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知sinx=2cosx,则$\frac{si{n}^{2}x}{1+co{s}^{2}x}$=$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=$\sqrt{3}$,且|$\overrightarrow{a}$-2$\overrightarrow{b}$|=1,则$\overrightarrow{a}$•$\overrightarrow{b}$=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知命题P:x1,x2是方程x2-mx-1=0的两个实根,且不等式a2+4a-3≤|x1-x2|对任意m∈R恒成立;命题q:不等式ax2+2x-1>0有解,若命题p∨q为真,p∧q为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知四棱锥P-ABCD如图(1),它的三视图如图(2)所示,其中PA⊥平面ABCD,△PBC为正三角形.

(1)求证:AC⊥平面PAB;
(2)求点A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,三角形ABC是等腰直角三角形,∠B=90°,AB=1,直线l经过点C且与AB平行,将三角形ABC绕直线l旋转一周得到一个几何体.
(1)求几何体的表面积;
(2)求几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.集合A={x|0<x2-x-2≤10},集合$B=\{x|\frac{1}{x+2}>0\}$,求A∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.不等式(ax-2)(x-1)≥0(a<0)的解集为(  )
A.[$\frac{2}{a}$,1]B.[1,$\frac{2}{a}$)C.(-∞,$\frac{2}{a}$]∪[1,+∞)D.(-∞,1]∪[$\frac{2}{a}$,+∞)

查看答案和解析>>

同步练习册答案