精英家教网 > 高中数学 > 题目详情

【题目】如图,在直三棱柱中,底面是等腰直角三角形, ,侧棱,点分别为棱的中点, 的重心为,直线垂直于平面.

1)求证:直线平面

2)求二面角的余弦.

【答案】(1)证明见解析;(2) .

【解析】试题分析:(1)证线面平行,直接找线线平行即可,构造平行四边形,证明平行于DE,即可得到线线平行进而得到线面平行(2)建系,分别求出两个半平面的法向量,根据公式得到法向量的夹角,从而得到二面角的大小。

(1) 连结 ,则在三角形为中位线,于是

因为中点,所以平行且等于. 所以在平行四边形中, 平行于

因为在平面 上,所以平行于平面

(2)分别以轴建立空间直角坐标系

,则

因为垂直于平面,所以有

解得,所以

的法向量,面的法向量为

所以

结合图形知,二面角的预先为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一台机器由于使用时间较长,生产的零件有一些缺损按不同转速生产出来的零件有缺损的统计数据如下表所示.

(1)作出散点图;

(2)如果y与x线性相关,求出回归直线方程;

(3)若实际生产中,允许每小时的产品中有缺损的零件最多为10个,那么机器的运转速度应控制在什么范围内?

转速x(转/秒)

16

14

12

8

每小时生产有缺损零件数y(个)

11

9

8

5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)将函数的图像(纵坐标不变)横坐标伸长为原来的倍,再把整个图像向左平移个单位长度得到的图像.当时,求函数的值域;

(2)若函数内是减函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是函数在区间上的图象,为了得到这个函数的图象,只需将y=sinx的图象

A. 向左平移个长度单位,再把所得各点的横坐标变为原来的,纵坐标不变

B. 向左平移至个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变

C. 向左平移个长度单位,再把所得各点的横坐标变为原来的,纵坐标不变

D. 向左平移个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抽查100袋洗衣粉,测得它们的重量如下(单位:g):

494 498 493 505 496 492 485 483 508

511 495 494 483 485 511 493 505 488

501 491 493 509 509 512 484 509 510

495 497 498 504 498 483 510 503 497

502 511 497 500 493 509 510 493 491

497 515 503 515 518 510 514 509 499

493 499 509 492 505 489 494 501 509

498 502 500 508 491 509 509 499 495

493 509 496 509 505 499 486 491 492

496 499 508 485 498 496 495 496 505

499 505 496 501 510 496 487 511 501

496

(1)列出样本的频率分布表:

(2)画出频率分布直方图,频率分布折线图;

(3)估计重量在[494.5,506.5]g的频率以及重量不足500g的频率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在直角坐标系中,椭圆 的上焦点为,椭圆的离心率为 ,且过点

1求椭圆的方程;

2设过椭圆的上顶点的直线与椭圆交于点不在轴上,垂直于的直线与交于点,与轴交于点,若,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为为参数),将曲线经过伸缩变换后得到曲线.在以原点为极点, 轴正半轴为极轴的极坐标系中,直线的极坐标方程为

1)说明曲线是哪一种曲线,并将曲线的方程化为极坐标方程;

2)已知点是曲线上的任意一点,求点到直线的距离的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若对任意 有唯一确定的与之对应,则称为关于 的二元函数,现定义满足下列性质的为关于实数 的广义距离

)非负性: ,当且仅当时取等号;

)对称性:

)三角形不等式: 对任意的实数均成立.

给出三个二元函数:①

则所有能够成为关于 的广义距离的序号为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等腰梯形中(如图1), 为线段的中点, 为线段上的点, ,现将四边形沿折起(如图2).

图1 图2

⑴求证: 平面

⑵在图2中,若,求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案