精英家教网 > 高中数学 > 题目详情
已知函数f(x)=sin(2x+
π
3
)+cos(2x-
π
6
),(x∈R)
(Ⅰ)求f(x)的单调增区间;
(Ⅱ)若f(
α
2
-
π
6
)=
6
5
,α∈(
π
2
,π),求tan(α-
π
4
)的值.
考点:三角函数中的恒等变换应用,正切函数的图象
专题:三角函数的求值,三角函数的图像与性质
分析:(Ⅰ)首先对函数的关系式进行恒等变换,把函数的关系式变形成正弦型函数,进一步利用整体思想求出函数的单调区间.
(Ⅱ)利用上步求出的函数解析式,首先通过函数关系式恒等变形,进一步求出函数的值.
解答: 解:(I)f(x)=sin(2x+
π
3
)+cos(2x-
π
6

=sin
π
3
cos2x+cos
π
3
sin2x
+cos2xcos
π
6
+sin2xsin
π
6

=
3
cos2x+sin2x

=2sin(2x+
π
3
)

令:-
π
2
+2kπ≤2x+
π
3
π
2
+2kπ
,(k∈Z).
解得:-
12
+kπ≤x≤
π
12
+kπ
,(k∈Z).
所以:函数的单调递增区间为:[-
12
+kπ,
π
12
+kπ
](k∈Z);                    
(II)根据f(x)=2sin(2x+
π
3
)

所以:f(
α
2
-
π
6
)=
6
5

解得:2sinα=
6
5

sinα=
3
5

由于α∈(
π
2
,π)

所以:cosα=-
4
5

tanα=-
3
4

tan2α=
2tanα
1-tan2α
=-
24
7

所以:tan(2α-
π
4
)=
tan2α-tan
π
4
1+tan2αtan
π
4
=
31
17
点评:本题考查的知识要点:三角函数关系式的恒等变换,利用整体思想求正弦型函数的单调区间,利用三角函数的定义域求三角函数的值,属于基础题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=lnx+
a(x+2)
x
,a∈R.
(1)当a=1时,求f(x)的最小值;
(2)讨论函数g(x)=f′(x)-
x
6
零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知ABCD中,AD=BC.AD∥BC,且AB=3
2
,AD=2
3
.BD=
6
,沿BD将其折成一个二面角A-BD-C,使得AB⊥CD.
(1)求二面角A-BD-C的大小;
(2)求折后点A到面BCD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={(x,y)|y=x}与集合B={(x,y)|x=a+
1-y2
,a∈R},若A∩B的元素只有一个,则实数a的取值范围是(  )
A、a=±
2
B、-1<a<1或a=±
2
C、a=
2
或-1≤a<1
D、-1<a≤1或a=-
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
3
sinxcosx-cos2x+
1
2
,在△ABC中,角A,B,C的对边分别是a,b,c,且满足2bcosA≤2c-
3
a,则f(B)的取值范围(  )
A、(-1,
1
2
]
B、(-
3
2
3
2
]
C、(-
1
2
,1]
D、(-
3
2
1
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率e=
1
2
,直线l:x-my-1=0(m∈R)过椭圆C的右焦点F,且交椭圆C于A,B两点.
(1)求椭圆C的标准方程;
(2)已知点D(
5
2
,0),连结BD,过点A作垂直于y轴的直线l1,设直线l1与直线BD交于点P,试探索当m变化时,是否存在一条定直线l2,使得点P恒在直线l2上?若存在,请求出直线l2的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=4sinxcos(x+
π
3
)+
3

(1)f(x)在区间[-
π
4
π
6
]上的最大值和最小值及取得最值时x的值.
(2)若方程f(x)-t=0在x∈[-
π
4
π
2
]上有唯一解,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
sin2x•sinφ+cos2x•cosφ+
1
2
sin(
3
2
π-φ)(0<φ<π),其图象过点(
π
6
1
2
.)
(Ⅰ)求函数f(x)在[0,π]上的单调递减区间;
(Ⅱ)若x0∈(
π
2
,π),sinx0=
3
5
,求f(x0)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(log2x)=
x
x2+1

(1)求f(x)的解析式;
(2)若f(2x2-λx)≥
2
5
对任意x∈[
1
2
,1]恒成立,求常数λ的取值范围.

查看答案和解析>>

同步练习册答案