精英家教网 > 高中数学 > 题目详情
6.已知椭圆$E:\frac{x^2}{4}+{y^2}=1$的左右顶点分别为A,B,点P为椭圆上异于A,B的任意一点.
(Ⅰ)求直线PA与PB的斜率之积;
(Ⅱ)过点Q(-1,0)作与x轴不重合的直线交椭圆E于M,N两点.问:是否存在以MN为直径的圆经过点A,若存在,请求出直线MN.若不存在,请说明理由.

分析 (Ⅰ)由已知椭圆方程可得A,B的坐标,设出P点坐标,写出直线PA与PB的斜率之积,结合P在椭圆上可得答案;
(Ⅱ)设出MN所在直线方程,联立直线方程与椭圆方程,化为关于y的一元二次方程,利用根与系数的关系结合平面向量数量积不为0,说明不存在以MN为直径的圆经过点A.

解答 解:(Ⅰ)由椭圆方程可知A(-2,0),B(2,0),
设P(x0,y0),则${{y}_{0}}^{2}=1-\frac{{{x}_{0}}^{2}}{4}$,
∴${k_{PA}}•{k_{PB}}=\frac{y_0}{{{x_0}+2}}•\frac{y_0}{{{x_0}-2}}=\frac{y_0^2}{x_0^2-4}=\frac{{1-\frac{x_0^2}{4}}}{x_0^2-4}=-\frac{1}{4}$;
(Ⅱ)不存在以MN为直径的圆经过点A.
事实上,设直线MN方程为:x=ty-1,
联立$\left\{\begin{array}{l}x=ty-1\\ \frac{x^2}{4}+{y^2}=1\end{array}\right.⇒({{t^2}+4}){y^2}-2ty-3=0$,
设交点M(x1,y1),N(x2,y2),
则${y_1}+{y_2}=\frac{2t}{{{t^2}+4}},{y_1}{y_2}=\frac{-3}{{{t^2}+4}}$,
若存在以MN为直径的圆经过点A,
则$\overrightarrow{AM}•\overrightarrow{AN}=({{x_1}+2,{y_1}})•({{x_2}+2,{y_2}})$
=$({{x_1}+2})•({{x_2}+2})+{y_1}{y_2}=({t{y_1}+1})•({t{y_2}+1})+{y_1}{y_2}=({{t^2}+1}){y_1}{y_2}+t({{y_1}+{y_2}})+1$
=$\frac{{-3({{t^2}+1})}}{{{t^2}+4}}+\frac{{2{t^2}}}{{{t^2}+4}}+1=\frac{1}{{{t^2}+4}}=0$,
该方程无解,∴不存在以MN为直径的圆经过点A.

点评 本题考查椭圆的简单性质,考查了直线与椭圆位置关系的应用,训练了平面向量在求解圆锥曲线问题中的应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知数列{an}是首项为1,公差为2的等差数列,将数列{an}中的各项排成如图所示的一个三角形数表,记A(i,j)表示第i行从左至右的第j个数,例如A(4,3)=a9,则A(10,2)=93.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.成书于公元五世纪的《张邱建算经》是中国古代数学史上的杰作,该书中记载有很多数列问题,说明古人很早就注意到了数列并且有很深的研究,从下面这首古民谣中可知一二:
南山一棵竹,竹尾风割断,剩下三十节,一节一个圈.头节高五寸,头圈一尺三
逐节多三分,逐圈少分三.一蚁往上爬,遇圈则绕圈.爬到竹子顶,行程是多远?
此民谣提出的问题的答案是(  )
(注:①五寸即0.5尺.②一尺三即1.3尺.③三分即0.03尺.④分三即一分三厘,等于0.013尺.)
A.72.705尺B.61.395尺C.61.905尺D.73.995尺

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.数列{an}满足2an=an+1+an+1(n≥2),且a1+a3+a5=9,a2+a4+a6=12则a3+a4+a5=(  )
A.9B.10C.11D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在正方体ABCD-A1B1C1D1中,与平面ACC1A1平行的棱共有(  )
A.2条B.3条C.4条D.6条

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列${a_n}=1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n}$(n∈N*).
(1)证明:当n≥2,n∈N*时,${a_{2^n}}>\frac{n+2}{2}$;
(2)若a>1,对于任意n≥2,不等式${a_{2n}}-{a_n}>\frac{7}{12}[{log_{(a+1)}}x-{log_a}x+1]$恒成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知F1(-3,0),F2(3,0)动点M满足|MF1|+|MF2|=10,则动点M的轨迹方程$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{16}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设集合A={x|x2-9<0},B={x|2x∈N},则A∩B的元素的个数为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知全集U=R,集合A={x|x2-2x≤0},B={x|y=lg(x-1)},则集合A∩(∁UB)=(  )
A.{x|x<0,或x>2}B.{x|0<x<2}C.{x|0≤x<1}D.{x|0≤x≤1}

查看答案和解析>>

同步练习册答案