精英家教网 > 高中数学 > 题目详情
16.函数y=$\frac{x-2}{x+1}$的单调增区间是(-∞,-1),(-1,+∞).

分析 先求出函数的定义域,在结合函数的表达式判断出函数的递增区间即可.

解答 解:函数的定义域是(-∞,-1)∪(-1,+∞),
y=$\frac{x-2}{x+1}$=1-$\frac{3}{x+1}$,
显然x递增时,y=-$\frac{3}{x+1}$递增,
∴函数在(-∞,-1),(-1,+∞)上递增,
故答案为:(-∞,-1),(-1,+∞).

点评 本题考查了函数的单调性问题,求出函数的定义域,将函数的表达式变形是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.当x=$\frac{1}{2}$时,x(1-x)的最大值为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.化简:
(1)$\frac{{a}^{\frac{4}{3}}-8{a}^{\frac{1}{3}}b}{4{b}^{\frac{2}{3}}+2{a}^{\frac{1}{3}}{b}^{\frac{1}{3}}+{a}^{\frac{2}{3}}}$÷(1-2$\frac{\root{3}{b}}{\root{3}{a}}$)×$\root{3}{a}$;
(2)$\frac{x-y}{{x}^{\frac{1}{3}}-{y}^{\frac{1}{3}}}$-$\frac{x+y}{{x}^{\frac{1}{3}}+{y}^{\frac{1}{3}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.解下列不等式:
(1)-x2+8x-3>0
(2)-4x2+12x-9<0
(3)x2+2x+8<0
(4)已知函数f(x)=(ax-1)•(x+b),如果不等式f(x)>0的解集是(-1,3),求a,b.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下面各选项中,两个集合相等的是(  )
A.M={(1,2)},N={(2,1)}B.M=(1,2),N={(1,2)}
C.M=∅,N={0}D.M={x|x2-3x+2=0},N={1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.彗星“紫金山一号”是南京紫金山天文台发现的,它的运行轨道是以太阳为一个焦点的椭圆,测得轨道的近日点(距离太阳最近的点)距太阳中心1.486天文单位,远日点(距离太阳最远的点)距太阳中心5.563天文单位(1天文单位是太阳到地球的平均距离.约1.5×108km),且近日点、远日点及太阳中心在同一条直线上,求轨道的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.解关于x的不等式:(log${\;}_{\frac{1}{2}}$x)2-3log${\;}_{\frac{1}{2}}$x-4>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.若曲线f(x)=xlnx+2m上点P处的切线方程为x-y=0.
(1)求实数m的值;
(2)若过点Q(1,t)存在两条直线与曲线y=f(x)相切,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x2-(a+2)x+alnx(a为实常数).
(Ⅰ)若a=-2,求曲线 y=f(x)在x=1处的切线方程;
(Ⅱ)讨论函数f(x)在[1,e]上的单调性;
(Ⅲ)若存在x∈[1,e],使得f(x)≤0成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案