【题目】如图,四棱锥中,底面为梯形,,点为的中点,且,点在上,且.
(1)求证:平面;
(2)若平面平面,且,求直线与平面所成角的正弦值.
【答案】(1)见解析;(2)
【解析】
(1)如图所示,取的中点,连结、,所以根据线面平行的判定定理即可证明;(2)取中点,中点,连结、,以N为原点,NA方向为x轴,NH方向为y轴,NP方向为z轴,建立空间坐标系,找到平面的一个法向量,求出直线向量所成夹角的余弦值,即可求直线与平面所成角的正弦值.
(1)如图所示,取的中点,连结、,
因为点为的中点,且,所以且,
因为,所以,所以,
又因为,所以,所以四边形为平行四边形,
所以,又平面,平面,所以∥平面;
(2)取中点,中点,连结、,
因为,所以,
又平面平面,所以平面,
又,所以,
以N为原点,NA方向为x轴,NH方向为y轴,NP方向为z轴,建立空间坐标系,
所以,,,,
在平面中,,,
设在平面的法向量为,所以,,
令,则法向量,又,
设直线与平面所成角为,
所以,
即直线与平面所成角的正弦值为.
科目:高中数学 来源: 题型:
【题目】在极坐标系中,曲线的方程为,以极点为原点,极轴所在直线为轴建立直角坐标,直线的参数方程为(为参数),与交于,两点.
(1)写出曲线的直角坐标方程和直线的普通方程;
(2)设点;若、、成等比数列,求的值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数学中有许多形状优美、寓意美好的曲线,如下图就是在平面直角坐标系的“心形曲线”,又名RC心形线.如果以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,其RC心形线的极坐标方程为.
(1)求RC心形线的直角坐标方程;
(2)已知与直线(为参数),若直线与RC心形线交于两点,,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:,,,,,,后得到如图的频率分
布直方图.
(1)求图中实数的值;
(2)若该校高一年级共有学生1000人,试估计该校高一年级期中考试数学成绩不低于60分的人数.
(3)若从样本中数学成绩在,与,两个分数段内的学生中随机选取2名学生,试用列举法求这2名学生的数学成绩之差的绝对值大于10的槪率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了预防新型冠状病毒的传染,人员之间需要保持一米以上的安全距离.某公司会议室共有四行四列座椅,并且相邻两个座椅之间的距离超过一米,为了保证更加安全,公司规定在此会议室开会时,每一行、每一列均不能有连续三人就座.例如下图中第一列所示情况不满足条件(其中“√”表示就座人员).根据该公司要求,该会议室最多可容纳的就座人数为( )
A.9B.10C.11D.12
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(13分)
在平面直角坐标系xOy中,抛物线上异于坐标原点O的两不同动点A、B满足(如图所示).
(Ⅰ)求得重心G(即三角形三条中线的交点)的轨迹方程;
(Ⅱ)的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知一块边长为4的正方形铝板(如图),请设计一种裁剪方法,用虚线标示在答题卡本题图中,通过该方案裁剪,可焊接做成一个密封的正四棱柱(底面是正方形且侧棱垂于底面的四棱柱),且该四棱柱的全面积等于正方形铝板的面积(要求裁剪的块数尽可能少,不计焊接缝的面积),则该四棱柱外接球的体积为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】受疫情影响,某电器厂生产的空调滞销,经研究决定,在已有线下门店销售的基础上,成立线上营销团队,大力发展“网红”经济,当线下销售人数为(人)时,每天线下销售空调可达(百台),当线上销售人数为(人)()时,每天线上销量达到(百台).
(1)解不等式:,并解释其实际意义;
(2)若该工厂大有销售人员()人,按市场需求,安排人员进行线上或线下销售,问该工厂每天销售空调总台数的最大值是多少百台?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com