精英家教网 > 高中数学 > 题目详情
已知a,b,l表示三条不同的直线,α,β,γ表示三个不同的平面,有下列四个命题:
①若α∩β=a,β∩γ=b,且a∥b,则α∥γ;、
②若a,b相交,且都在α,β外,a∥α,a∥β,b∥α,b∥β,则α∥β;
③若α⊥β,α∩β=a,b?β,a⊥b,则b⊥α;
④若a?α,b?α,l⊥a,l⊥b,则l⊥α.
其中正确命题的序号是
 
考点:空间中直线与直线之间的位置关系
专题:空间位置关系与距离
分析:根据空间中的直线,平面之间的平行,垂直的判定,性质定理判断分析,可以得出答案.
解答: 解:①若α∩β=a,β∩γ=b,且a∥b,则α∥γ,因为有可能相交,所以不正确,
②正确,∵在空间确定一个点O,过O作a,b的平行a′,b′.过a′,b′的平面为γ
∴a∥a′,b∥b′
∵a∥α,a∥β,b∥α,b∥β,
∴γ∥α,γ∥β,
∴α∥β
③正确,∵α⊥β,α∩β=a,b?β,
∴设交点为O,过O作c⊥a,∴c⊥β
∴c⊥b
∵b⊥a,b⊥c,a∩c=O,
∴b⊥α
④不正确,因为如果a∥b,则l不垂直α
故答案为:②③
点评:本题考查了空间直线,平面的位置关系,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x3-mx2-3x,x=3是f(x)的极值点,则f(x)在[1,m]的最大值与最小值的和是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

从x轴上一点A分别向函数f(x)=-x3与函数g(x)=
2
|x3|+x3
引不是水平方向的切线l1和l2,两切线l1、l2分别与y轴相交于点B和点C,O为坐标原点,记△OAB的面积为S1,△OAC的面积为S2,则S1+S2的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知三棱柱ABC-A1B1C1的体积为V,则三棱锥C1-ABC的体积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,两曲线ρ=4cosθ与ρcos(θ+
π
4
)=
2
交于A,B两点,则|AB|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二阶矩阵M=
a1
3b
的特征值λ=-1所对应的一个特征向量
e1
=
1
-3

(1)求矩阵M;
(2)设曲线C在变换矩阵M作用下得到的曲线C′的方程为xy=1,求曲线C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,若双曲线Γ:
x2
a2
-
y2
b2
=1(a>0,b>0)的渐近线为l1,l2,直线l:
x
c
+
y
b
=1分别与l1,l2交于A,B,若线段AB中点横坐标为-c,则双曲线Γ的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的两个焦点恰为椭圆
x2
4
+y2
=1的两个顶点,且离心率为2,则该双曲线的标准方程为(  )
A、x2-
y2
3
=1
B、
x2
4
-
y2
12
=1
C、
x2
3
-y2
=1
D、
x2
12
-
y2
4
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列1,2cosθ,22cos2θ,23cos3θ,…,前100项之和为0,则θ的值为
 

查看答案和解析>>

同步练习册答案