精英家教网 > 高中数学 > 题目详情

为了解某校高三毕业班报考体育专业学生的体重(单位:千克)情况,将从该市某学校抽取的样本数据整理后得到如下频率分布直方图.已知图中从左至右前3个小组的频率之比为1:2:3,其中第2小组的频数为12.

(Ⅰ)求该校报考体育专业学生的总人数n;
(Ⅱ)若用这所学校的样本数据来估计该市的总体情况,现从该市报考体育专业的学生中任选3人,设表示体重超过60千克的学生人数,求的分布列和数学期望.

(Ⅰ).
(Ⅱ)


0
1
2
3





(或).

解析试题分析:(Ⅰ)设从左至右前3小组的频率分别为
由题意得   3分
                    5分
                 6分
(Ⅱ)由(Ⅰ)得一个报考体育专业学生的体重超过60公斤的概率为
             8分
由题意可知
       10分


0
1
2
3





(或)     12分
考点:频率分布直方图,随机变量的分布列及数学期望。
点评:中档题,作为数学应用问题,实际背景学生熟悉,易于理解题意,关键是细心计算。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

为了比较“传统式教学法”与我校所创立的“三步式教学法”的教学效果.共选100名学生随机分成两个班,每班50名学生,其中一班采取“传统式教学法”,二班实行“三步式教学法”
(Ⅰ)若全校共有学生2000名,其中男生1100名,现抽取100名学生对两种教学方式的受欢迎程度进行问卷调查,应抽取多少名女生?
(Ⅱ)下表1,2分别为实行“传统式教学”与“三步式教学”后的数学成绩:
表1

数学成绩
90分以下
90—120分
120—140分
140分以上
频   数
15
20
10
5
表2
数学成绩
90分以下
90—120分
120—140分
140分以上
频   数
5
40
3
2
完成下面2×2列联表,并回答是否有99%的把握认为这两种教学法有差异.
班  次
120分以下(人数)
120分以上(人数)
合计(人数)
一班
 
 
 
二班
 
 
 
合计
 
 
 
参考公式:,其中
参考数据:
P(K2≥k0)
0.40
0.25
0.10
0.05
0.010
0.005
k0
0.708
1.323
2.706
3.841
6.635
7.879

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了调査某大学学生在某天上网的时间,随机对lOO名男生和100名女生进行了不记名的问卷调查.得到了如下的统计结果:
表l:男生上网时间与频数分布表

表2:女生上网时间与频数分布表

(I)从这100名男生中任意选出3人,其中恰有1人上网时间少于60分钟的概率;
(II)完成下面的2X2列联表,并回答能否有90%的把握认为“大学生上网时间与性别有关”?
表3:

附:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.
(Ⅰ)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率;
(Ⅱ)先从袋中随机取一个球,该球的编号为,将球放回袋中,然后再从袋中随机取一个球,该球的编号为,求的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

甲、乙两人进行围棋比赛,规定每局胜者得1分,负者得0分,比赛进行到有一方比对方多2分或打满6局时停止.设甲在每局中获胜的概率为,且各局胜负相互独立.已知第二局比赛结束时比赛停止的概率为.
(Ⅰ)求的值;
(Ⅱ)设表示比赛停止时已比赛的局数,求随机变量的分布列和数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

有甲乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表:

 
优秀
非优秀
总计
甲班
10
 
 
乙班
 
30
 
合计
 
 
105
已知在全部的105人中随机抽取1人为优秀的概率为
(Ⅰ)请完成上面的列联表;
(Ⅱ)从105名学生中选出10名学生组成参观团,若采用下面的方法选取:用简单随机抽样从105人中剔除5人,剩下的100人再按系统抽样的方法抽取10人,请写出在105人中,每人入选的概率(不必写过程);
(Ⅲ)把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号,试求抽到6号或10号的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

袋子里有完全相同的3只红球和4只黑球,今从袋子里随机取球.
(Ⅰ)若有放回地取3次,每次取一个球,求取出2个红球1个黑球的概率;
(Ⅱ)若无放回地取3次,每次取一个球,若取出每只红球得2分,取出每只黑球得1分,求得分的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

“中国式过马路”存在很大的交通安全隐患.某调查机构为了解路人对“中国式过马路”的态度是否与性别有关,从马路旁随机抽取30名路人进行了问卷调查,得到了如下列联表:

 
男性
女性
合计
反感
10
 
 
不反感
 
8
 
合计
 
 
30
已知在这30人中随机抽取1人抽到反感“中国式过马路”的路人的概率是
(Ⅰ)请将上面的列联表补充完整(在答题卡上直接填写结果,不需要写求解过程),并据此资料分析反感“中国式过马路 ”与性别是否有关?
(Ⅱ)若从这30人中的女性路人中随机抽取2人参加一活动,记反感“中国式过马路”的人数为X,求X的分布列和数学期望.
P(K2>k)
0.05
0.025
0.010
0.005
k
3.841
5.024
6.635
7.879
下面的临界值表供参考:
(参考公式:K2=,其中n="a+b+c+d)"

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某果园要用三辆汽车将一批水果从所在城市E运至销售城市F,已知从城市E到城市F有两条公路.统计表明:汽车走公路Ⅰ堵车的概率为,不堵车的概率为;走公路Ⅱ堵车的概率为,不堵车的概率为,若甲、乙两辆汽车走公路Ⅰ,第三辆汽车丙由于其他原因走公路Ⅱ运送水果,且三辆汽车是否堵车相互之间没有影响.
(1)求甲、乙两辆汽车中恰有一辆堵车的概率;
(2)求三辆汽车中至少有两辆堵车的概率.

查看答案和解析>>

同步练习册答案