精英家教网 > 高中数学 > 题目详情

如图,在长方体中,在棱上.

(1)求异面直线所成的角;
(2)若二面角的大小为,求点到面的距离.

(1)对于异面直线的所成的角,一般采用平移法,平移到一个三角形中,借助于余弦定理求解。
(2)

解析试题分析:解法一:(1)连结.由是正方形知.
平面,
在平面内的射影.
根据三垂线定理得,
则异面直线所成的角为. 5分
(2)作,垂足为,连结,则.
所以为二面角的平面角,.于是,
易得,所以,又,所以.
设点到平面的距离为,则由于,
因此有,即,∴.…………12分
解法二:如图,分别以轴,轴,轴,建立空间直角坐标系.

(1)由,得,
,又,则.
,则异面直线所成的角为. 5分
(2)为面的法向量,设为面的法向量,则
,
.      ①
,得,则,即,∴
②由①、②,可取,又,
所以点到平面的距离. 12分
考点:异面直线所成的角,点到面的距离
点评:考查了异面直线所成的角以及点到面的距离的求解,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,已知为平行四边形,,点上,相交于.现将四边形沿折起,使点在平面上的射影恰在直线上.

(Ⅰ) 求证:平面
(Ⅱ) 求折后直线与平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在棱长为的正方体中,分别为的中点.

(1)求直线与平面所 成 角的大小;
(2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

直三棱柱中,分别为的中点.

(Ⅰ)求证:平面
(Ⅱ)求四面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点.

求证:(1)直线EF∥平面PCD;
(2)平面BEF⊥平面PAD

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900

求证:(1)PC⊥BC;
(2)求点A到平面PBC的距离。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面是正方形,⊥底面,点在棱上.

(1)求证:平面⊥平面
(2)当的中点时,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知四棱锥E-ABCD的底面为菱形,且∠ABC=60°,AB=EC=2,AE=BE=

(1)求证:平面EAB⊥平面ABCD
(2)求二面角A-EC-D的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,在三棱锥中,, 点分别在棱上,且

(Ⅰ)求证:平面PAC
(Ⅱ)当的中点时,求与平面所成的角的正弦值;
(Ⅲ)是否存在点使得二面角为直二面角?并说明理由.

查看答案和解析>>

同步练习册答案