精英家教网 > 高中数学 > 题目详情
6.已知数列{an}是等差数列,{bn}是正项等比数列,且a5=b6,则一定有(  )
A.a3+a7≤b4+b8B.a3+a7<b4+b8C.a3+a7>b4+b8D.a3+a7≥b4+b8

分析 由已知结合等差数列和等比数列的性质得答案.

解答 解:∵数列{an}是等差数列,且{bn}是正项等比数列,
∴a3+a7=2a5,又a5=b6
∴a3+a7=2b6
而b4+b8$≥2\sqrt{{b}_{4}{b}_{8}}=2\sqrt{{{b}_{6}}^{2}}=2{b}_{6}$,
∴a3+a7≤b4+b8
故选:A.

点评 本题考查等差数列和等比数列的通项公式,考查了等差数列和等比数列的性质,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.若A={3,1,0},B={1,0,x},若A=B,则x=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知角θ∈(0,2π),关于x的方程2x2-($\sqrt{3}$-1)x+m=0的两根为sinθ,cosθ.
(1)求m的值;
(2)求方程的两根及此时θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知f(x)=exlnx+2ex
(1)求y=f(x)-exlnx-2ex-$\frac{{e}^{x}}{x}$在x∈[$\frac{1}{2}$,2]上的最值;
(2)已知函数h(x)=$\frac{f(x)}{x}$-x-1,数列{an}的通项公式为an=$\frac{1}{n}$,其前n项和为Sn,求证:2×3×4×…×n>${e}^{n-{S}_{n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,角A,B,C对应的边分别是a,b,c,已知cosC+(cosB-$\sqrt{3}$sinB)cosA=0,
(1)求角A的大小;
(2)若△ABC的面积S=5$\sqrt{3}$,b=5,求sinBsinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在平面直角坐标系xoy中,已知向量$\overrightarrow{a}$=($\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$),$\overrightarrow{b}$=(cosx,sinx),$x∈({-\frac{π}{2},\frac{π}{2}})$.
(I)若$\overrightarrow{a}$⊥$\overrightarrow{b}$,求tanx的值;
(II)若$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{6}$,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(1)将下列文字语言转化为符号语言.
①点P在直线l上,但不在平面α内;
②平面α与平面β交于直线l,a在平面β内,且与直线l交于点P.
(2)将下列符号语言转化为图形语言.
①P∉m,m?α,l∩α=P;②α∩β=l,β∩γ=m,α∩γ=n,l∩m∩n=P.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ex,x∈R
(Ⅰ)若直线y=kx与f(x)的反函数的图象相切,求实数k的值
(Ⅱ)设a,b∈R,且a≠b,A=f($\frac{a+b}{2}$),B=$\frac{f(a)+f(b)}{2}$,C=$\frac{f(a)-f(b)}{a-b}$,试比较A,B,C三者的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数$f(x)=3sin(ωx+φ)(|φ|<\frac{π}{2})$的最小正周期为π,且f(x)的图象经过点$(-\frac{π}{6},0)$.则函数f(x)的图象的一条对称轴方程为(  )
A.$x=\frac{5π}{12}$B.$x=-\frac{π}{12}$C.$x=-\frac{5π}{12}$D.$x=\frac{π}{2}$

查看答案和解析>>

同步练习册答案