A. | λ=4,μ=2 | B. | λ=4,μ=1 | C. | λ=2,μ=1 | D. | λ=2,μ=2 |
分析 以OC为对角线,以OA,OB方向为邻边作平行四边形,求出平行四边形OA方向上的边长即可得出答案.以OC为对角线,以OA,OB方向为邻边作平行四边形,求出平行四边形OA方向上的边长即可得出答案.
解答 解:过点C作CE∥OB交OA的延长线于点E,过点C作CF∥OA交OB的延长线于点F,则$\overrightarrow{OC}$=$\overrightarrow{CE}$+$\overrightarrow{OF}$.
∴∠OCE=∠COF=90°,∵∠COE=30°,∴CE=$\frac{1}{2}$OE,
∵CE2+OC2=OE2,
∴CE=2,OE=4.
∵OA=2,$\overrightarrow{OC}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$,(λ,μ∈R).
∴λ=$\frac{OE}{OA}$=2,μ=$\frac{OF}{OB}$=$\frac{CE}{OB}$=1,
故选:C
点评 本题考查了平面向量的基本定理,向量运算的几何意义,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {3} | B. | {1,3} | C. | {0,1,3} | D. | {-1,0,1,3} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | y=|x-1| | B. | y=log2x | C. | y=(x+1)2 | D. | y=($\frac{1}{2}$)x |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com