精英家教网 > 高中数学 > 题目详情
已知等比数列{an}的公比为q,a1=
3
2
,其前n项和为Sn(n∈N*),且S2,S4,S3成等差数列.
(I)求数列{an}的通项公式;
(Ⅱ)设bn=Sn-
1
Sn
(n∈N*),求bn的最大值与最小值.
考点:等比数列的性质,数列的函数特性
专题:综合题,等差数列与等比数列
分析:(Ⅰ)利用等比数列的前n项和公式表示出S2,S4,S3,然后根据S2,S4,S3成等差数列,利用等差数列的性质列出关系式,将表示出的S2,S4,S3代入得到关于a1与q的关系式,由a1≠0,两边同时除以a1,得到关于q的方程,求出方程的解,即可得到数列{an}的通项公式;
(Ⅱ)Sn=1-(-
1
2
)n
,分类讨论,利用函数的单调性,即可求出bn的最大值与最小值.
解答: 解:(Ⅰ)由题意,q≠1,则
∵S2,S4,S3成等差数列,
∴2S4=S2+S3
又数列{an}为等比数列,
∴4(a1+a1q+a1q2+a1q3)=(a1+a1q)+(a1+a1q+a1q2),
整理得:2q2-q-1=0,
解得:q=1或q=-
1
2

∴an=
3
2
•(-
1
2
)n-1


(Ⅱ)Sn=1-(-
1
2
)n

n为奇数时,Sn=1+
1
2n
,随着n的增大而减小,所以1<Sn≤S1=
3
2

因为y=x-
1
x
在(0,+∞)上为增函数,bn=Sn-
1
Sn
(n∈N*),
所以0<bn
5
6

n为偶数时,Sn=1-
1
2n
,随着n的增大而增大,所以S2≤Sn<1,
因为y=x-
1
x
在(0,+∞)上为增函数,bn=Sn-
1
Sn
(n∈N*),
所以-
7
12
≤bn<0;
所以-
7
12
≤bn<0或0<bn
5
6

所以bn的最大值为
5
6
,最小值为-
7
12
点评:此题考查了等差数列的性质,等比数列的通项公式、求和公式,熟练掌握公式及性质是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于函数f(x),若存在区间A=[m,n],使得{y|y=f(x),x∈A}=A,则称函数f(x)为“同域函数”,区间A为函数f(x)的一个“同城区间”.给出下列四个函数:
①f(x)=cos
π
2
x;②f(x)=x2-1;③f(x)=|x2-1|;④f(x)=log2(x-1).
存在“同域区间”的“同域函数”的序号是
 
(请写出所有正确的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F(x,y)=(x+y)2+(
1
y
-
x
2
2(y≠0),则F(x,y)的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

用两个平行平面同截一个直径为20cm的球面,所得截面圆的面积分别是64πcm2、36πcm2,则这两个平面间的距离是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)在R上的导函数为f′(x),且2f(x)+xf′(x)>x2,则不等式(x2-x)f(x)>0的解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={y|y=lnx,x>1},集合B={x|y=
4-x2
},则A∩∁RB=(  )
A、∅
B、(0,2]
C、(2,+∞)
D、(-∞,-2)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

关于圆周率π,数学展史上出现过许多有创意的求法,如著名的浦丰实验和查理斯实验,受其启发,我们也可以通过设计下面的实验来估计π的值:先请l20名同学,每人随机写下一个都小于l的正实数对(x,y); 再统计两数能与l 构成钝角三角形三边的数对(x,y) 的个数m; 最后再根据统计数m来估计π的值.假如统计结果是m=94,那么可以估计π≈
 
(用分数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

设复数z1,z2在复平面内对应的点关于虚轴对称,若z1=1-2i,则
z2
z1
的虚部为(  )
A、
3
5
B、-
3
5
C、
4
5
D、-
4
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(ωx+ϕ) (ω>0,|ϕ|<
π
2
)有一个零点x0=-
2
3
,且其图象过点A(
7
3
,1),记函数f(x)的最小正周期为T,
(1)若f′(x0)<0,试求T的最大值及T取最大值时相应的函数解析式、
(2)若将所有满足题条件的ω值按从小到大的顺序排列,构成数列{ωn},试求数列{ωn}的前项和Sn

查看答案和解析>>

同步练习册答案