分析 ①所求概率为$\frac{{C}_{2}^{1}{C}_{4}^{2}}{{C}_{6}^{3}}$,计算即得结论;
②利用取到红球次数X~B(6,$\frac{2}{3}$)可知其方差为$6•\frac{2}{3}•(1-\frac{2}{3})$=$\frac{4}{3}$;
③通过每次取到红球的概率P=$\frac{2}{3}$可知所求概率为1-$(1-\frac{2}{3})^{3}$=$\frac{26}{27}$.
解答 解:①从中任取3球,恰有一个白球的概率是$\frac{{C}_{2}^{1}{C}_{4}^{2}}{{C}_{6}^{3}}$=$\frac{2•\frac{4•3}{2•1}}{\frac{6•5•4}{3•2•1}}$=$\frac{3}{5}$,故正确;
②从中有放回的取球6次,每次任取一球,
取到红球次数X~B(6,$\frac{2}{3}$),其方差为$6•\frac{2}{3}•(1-\frac{2}{3})$=$\frac{4}{3}$,故正确;
③从中有放回的取球3次,每次任取一球,每次取到红球的概率P=$\frac{2}{3}$,
∴至少有一次取到红球的概率为1-$(1-\frac{2}{3})^{3}$=$\frac{26}{27}$,故正确.
故答案为:①②③.
点评 本题考查概率的计算,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | -1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com