精英家教网 > 高中数学 > 题目详情
9.已知集合M是同时满足下列条件的函数f(x)的全体:①f(x)的定义域为(0,+∞);②对任意的正实数x,都有f(x)=f(${\frac{1}{x}}$)成立.
(1)设函数f(x)=$\frac{x}{{1+{x^2}}}$(x>0),证明:f(x)属于集合M,且存在定义域为[2,+∞)的函数g(x),使得对任意的正实数x,都有g(x+$\frac{1}{x}}$)=f(x)成立;
(2)对于集合M中的任意函数f(x),证明:存在定义域为[2,+∞)的函数g(x),使得对任意的正实数x,都有g(x+$\frac{1}{x}}$)=f(x)成立.

分析 (1)函数f($\frac{1}{x}$)=$\frac{\frac{1}{x}}{1+(\frac{1}{x})^{2}}$=$\frac{x}{{1+{x^2}}}$=f(x).故满足①②.
(2)对任意的正实数x,f(x)=$\frac{x}{{1+{x^2}}}$=$(\frac{1+{x}^{2}}{x})^{-1}$=$(\frac{1}{x}+x)^{-1}$=g(x+$\frac{1}{x}}$),⇒g(x)=$\frac{1}{x}$,∵$x+\frac{1}{x}≥2$.

解答 解:(1)函数f(x)=$\frac{x}{{1+{x^2}}}$(x>0),满足:①f(x)的定义域为(0,+∞);
又∵函数f($\frac{1}{x}$)=$\frac{\frac{1}{x}}{1+(\frac{1}{x})^{2}}$=$\frac{x}{{1+{x^2}}}$=f(x).故满足②对任意的正实数x,都有f(x)=f(${\frac{1}{x}}$)成立.
∴f(x)属于集合M.
(2)对任意的正实数x,f(x)=$\frac{x}{{1+{x^2}}}$=$(\frac{1+{x}^{2}}{x})^{-1}$=$(\frac{1}{x}+x)^{-1}$=g(x+$\frac{1}{x}}$),⇒g(x)=$\frac{1}{x}$,∵$x+\frac{1}{x}≥2$,
即存在定义域为[2,+∞)的函数g(x),使得对任意的正实数x,都有g(x+$\frac{1}{x}}$)=f(x)成立.

点评 本题考查了抽象函数的解析式及定义域,理解函数的三要素的含义是关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.(1)已知a为常数,且0<a<1,函数f(x)=(1+x)a-ax,求函数f(x)在x>-1上的最大值;
(2)若a,b均为正实数,求证:ab+ba>1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x,x>0}\\{{2}^{x},x≤0}\end{array}\right.$,则f(f($\frac{1}{9}$))?(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{6}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设f(x)=$\left\{\begin{array}{l}{2•{e}^{x-1},x≤2}\\{lo{g}_{3}({x}^{2}-1),x≥2}\end{array}\right.$,则f[f(2)]=(  )
A.0B.1C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.定义在数集U内的函数y=f(x),若对任意x1,x2∈U都有|f(x1)-f(x2)|<1,则称函数y=f(x)为U上的storm函数.
(Ⅰ)判断下列函数是否为[-1,1]内storm函数,并说明理由:
①y=2x-1+1,②$y=\frac{1}{2}{x^2}+1$;
(Ⅱ)若函数$f(x)=\frac{1}{2}{x^2}-bx+1$在x∈[-1,1]上为storm函数,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知椭圆的标准方程为${x^2}+\frac{y^2}{10}=1$,则椭圆的焦点坐标为(  )
A.(-3,0),(3,0)B.(0,-3),(0,3)C.(-$\sqrt{10}$,0),($\sqrt{10}$,0)D.(0,-$\sqrt{10}$),(0,$\sqrt{10}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求满足下列条件的椭圆的标准方程:
(1)经过两点$A({-2,\sqrt{2}}),B({\sqrt{6},-1})$;
(2)过点P(-3,2),且与椭圆$\frac{x^2}{9}+\frac{y^2}{4}=1$有相同的焦点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,在棱长为1的正方体ABCD-A1B1C1D1中,点E是冷BC的中点,点F在冷CC1上,且CF=2FC1,P是侧面四边形BCC1B1内一点(含边界).若A1P∥平面AEF,则线段
A1P长度的取值范围是(  )
A.$[{\frac{{\sqrt{29}}}{5},\frac{{\sqrt{5}}}{2}}]$B.$[{\frac{{\sqrt{29}}}{5},\frac{{\sqrt{13}}}{3}}]$C.$[{\frac{{3\sqrt{2}}}{4},\frac{{\sqrt{13}}}{3}}]$D.$[{\frac{{3\sqrt{2}}}{4},\frac{{\sqrt{5}}}{2}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.椭圆$\frac{x^2}{4}+{y^2}=1$上的点到直线$x-y+5\sqrt{5}=0$的距离的最大值是3$\sqrt{10}$.

查看答案和解析>>

同步练习册答案