精英家教网 > 高中数学 > 题目详情

【题目】(本小题满分12分)已知等差数列{an}的前n项和为Sn,且a3=5S15="225."

1)求数列{an}的通项an

2)设bn=+2n,求数列{bn}的前n项和Tn.

【答案】解:()设等差数列{an}首项为a1,公差为d,由题意,得

解得

∴an=2n1

=

【解析】

试题(1)由数列为等差数列的通项公式及求和公式,可得关于公差与首项的方程组,由方程组即可求出首项与公差,在由通项公式即可得结论.

2)由(1)可得,因此数列的通项是由一个等比数列与一个等差数列的和构成,分别对两个数列求和,再分别利用等比数列求和公式与等差数列求和公式,求出两个数列的和,再将两个和式相加即可得到结论.

试题解析:(1)设数列的公差为d,根据题意得2

解得:4

5

2)由(1)可得

6

8

10

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若函数g(x)=alnx,对任意x∈[1,e],都有g(x)≥﹣x2+(a+2)x恒成立,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若数列{an}中的项都满足a2n1=a2n<a2n+1(n∈N*),则称{an}为“阶梯数列”.
(1)设数列{bn}是“阶梯数列”,且b1=1,b2n+1=9b2n1(n∈N*),求b2016
(2)设数列{cn}是“阶梯数列”,其前n项和为Sn , 求证:{Sn}中存在连续三项成等差数列,但不存在连续四项成等差数列;
(3)设数列{dn}是“阶梯数列”,且d1=1,d2n+1=d2n1+2(n∈N*),记数列{ }的前n项和为Tn , 问是否存在实数t,使得(t﹣Tn)(t+ )<0对任意的n∈N*恒成立?若存在,请求出实数t的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,AB=BC=2,∠ABC=120°,AD=CD= ,直线PC与平面ABCD所成角的正切为
(1)设E为直线PC上任意一点,求证:AE⊥BD;
(2)求二面角B﹣PC﹣A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,ABCDEF分别为线段ADPA的中点.

求证:平面平面BEF

求证:平面PAC

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】点P在双曲线 =1(a>0,b>0)的右支上,其左、右焦点分别为F1 , F2 , 直线PF1与以坐标原点O为圆心、a为半径的圆相切于点A,线段PF1的垂直平分线恰好过点F2 , 则该双曲线的渐近线的斜率为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex+be﹣x﹣2asinx(a,b∈R).
(1)当a=0时,讨论函数f(x)的单调区间;
(2)当b=﹣1时,若f(x)>0对任意x∈(0,π)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若实数x,y满足的约束条件 ,将一颗骰子投掷两次得到的点数分别为a,b,则函数z=2ax+by在点(2,﹣1)处取得最大值的概率为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2lnx+ax﹣ (a∈R)在x=2处的切线经过点(﹣4,ln2)
(1)讨论函数f(x)的单调性;
(2)若不等式 >mx﹣1恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案