精英家教网 > 高中数学 > 题目详情

【题目】设集合A={x|(x﹣2m+1)(x﹣m+2)<0},B={x|1≤x+1≤4}.
(1)若m=1,求A∩B;
(2)若A∩B=A,求实数m的取值集合.

【答案】
(1)解:集合B={x|0≤x≤3}

若m=1,则A={x|﹣1<x<1},

则A∩B={x|0≤x<1}


(2)解:当A=即m=﹣1时,A∩B=A;

当A≠即m≠﹣1时,

(ⅰ)当m<﹣1时,A=(2m﹣1,m﹣2),要使得A∩B=A,AB,

只要 ,所以m的值不存在.

(ii)当m>﹣1时,A=(m﹣2,2m﹣1),要使得A∩B=A,AB,

只要 ,∴m=2.

综上所述,m的取值集合是{﹣1,2}


【解析】1、本题考查的是不等式表示的集合之间的运算关系。
2、本题考查的是集合的运算性质,当A∩B=A时特殊情况A=需要特别注意。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知:函数f(x)= x2+ax﹣2a2lnx,(a≠0). (I)求f(x)的单调区间;
(II)若f(x)>0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x+1)定义域是[﹣2,3],则y=f(2x﹣5)的定义域( )
A.
B.
C.[﹣11,﹣1]
D.[﹣3,7]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ln(1﹣x)﹣ln(1+x),则f(x)是( )
A.奇函数,且在(0,1)上是增函数
B.奇函数,且在(0,1)上是减函数
C.偶函数,且在(0,1)上是增函数
D.偶函数,且在(0,1)上是减函数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= +lnx在(1,+∞)上是增函数,且a>0.
(1)求a的取值范围;
(2)求函数g(x)=ln(1+x)﹣x在[0,+∞)上的最大值;
(3)设a>1,b>0,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p: ,命题q:x∈R,x2﹣2ax+2﹣a=0,若命题“p∧q”是真命题,则实数a的取值范围是(
A.(﹣∞,﹣2]∪{1}
B.(﹣∞,﹣2]∪[1,2]
C.[1,+∞)
D.[﹣2,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知P是圆x2+y2=36的圆心,R是椭圆 上的一动点,且满足
(1)求动点Q的轨迹方程
(2)若直线y=x+1与曲线Q相交于A、B两点,求弦AB的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某化工厂生产某种产品,当年产量在150吨至250吨时,每年的生产成本y万元与年产量x吨之间的关系可可近似地表示为y= ﹣30x+4000.
(1)若每年的生产总成本不超过2000万元,求年产量x的取值范围;
(2)求年产量为多少吨时,每吨的平均成本最低,并求每吨的最低成本.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={1,2,3},B={x|x2﹣(a+1)x+a=0,x∈R},若A∪B=A,求实数a.

查看答案和解析>>

同步练习册答案