精英家教网 > 高中数学 > 题目详情

【题目】下列有关线性回归分析的四个命题:

①线性回归直线必过样本数据的中心点();

②回归直线就是散点图中经过样本数据点最多的那条直线;

③当相关性系数时,两个变量正相关;

④如果两个变量的相关性越强,则相关性系数就越接近于

其中真命题的个数为(  )

A. 1个 B. 2个 C. 3个 D. 4个

【答案】B

【解析】分析:根据线性回归方程的几何特征及残差,相关指数的概论,逐一分析四个答案的正误,可得答案.

详解:①线性回归直线必过样本数据的中心点(,故①正确;
②回归直线在散点图中可能不经过任一样本数据点,故②错误;
③当相关性系数,则两个变量正相关,故③正确;
④如果两个变量的相关性越强,则相关性系数r就越接近于1-1,故④错误.
故真命题的个数为2,
所以B选项是正确的

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数);以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(Ⅰ)求曲线的普通方程与曲线的直角坐标方程;

(Ⅱ)若把曲线各点的横坐标伸长到原来的倍,纵坐标变为原来的,得到曲线,求曲线的方程;

(Ⅲ)设为曲线上的动点,求点到曲线上点的距离的最小值,并求此时点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片.
(1)求所取3张卡片上的数字完全相同的概率;
(2)X表示所取3张卡片上的数字的中位数,求X的分布列与数学期望.(注:若三个数字a,b,c满足a≤b≤c,则称b为这三个数的中位数.)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业通过调查问卷(满分50分)的形式对本企业900名员工的工作满意程度进行调查,并随机抽取了其中30名员工(16名女工,14名男工)的得分,如下表:

47

36

32

48

34

44

43

47

46

41

43

42

50

43

35

49

37

35

34

43

46

36

38

40

39

32

48

33

40

34

(1)根据以上数据,估计该企业得分大于45分的员工人数;

(2)现用计算器求得这30名员工的平均得分为40.5分,若规定大于平局得分为 “满意”,否则为 “不满意”,请完成下列表格:

“满意”的人数

“不满意”的人数

合计

女员工

16

男员工

14

合计

30

(3)根据上述表中数据,利用独立性检验的方法判断,能否在犯错误的概率不超过1%的前提下,认为该企业员工“性别”与“工作是否满意”有关?

参考数据:

P(K2K)

0.10

0.050

0.025

0.010

0.001

K

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量,设

(1)求函数的最小正周期;

(2)当时,求函数的最大值及最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}和{bn}满足a1a2a3…an= (n∈N*).若{an}为等比数列,且a1=2,b3=6+b2
(1)求an和bn
(2)设cn= (n∈N*).记数列{cn}的前n项和为Sn
(i)求Sn
(ii)求正整数k,使得对任意n∈N*均有Sk≥Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】上饶某购物中心在开业之后,为了解消费者购物金额的分布,在当月的电脑消费小票中随机抽取张进行统计,将结果分成5组,分别是,制成如图所示的频率分布直方图(假设消费金额均在元的区间内).

1)若在消费金额为元区间内按分层抽样抽取6张电脑小票,再从中任选2张,求这2张小票均来自元区间的概率;

2)为做好五一劳动节期间的商场促销活动,策划人员设计了两种不同的促销方案:

方案一:全场商品打8.5折;

方案二:全场购物满200元减20元,满400元减50元,满600元减80元,满800元减120元,以上减免只取最高优惠,不重复减免.利用直方图的信息分析哪种方案优惠力度更大,并说明理由(直方图中每个小组取中间值作为该组数据的替代值).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在D上的函数,如果满足:对任意,存在常数,都有成立,则称D上的有界函数,其中M称为函数的上界已知函数

,求函数上的值域,并判断函数上是否为有界函数,请说明理由;

若函数上是以3为上界的有界函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知点直线,动直线垂直于点线段的垂直平分线交于点设点的轨迹为

(Ⅰ)求曲线的方程;

(Ⅱ)以曲线上的点为切点做曲线的切线,设分别与轴交于两点,且恰与以定点为圆心的圆相切.当圆的面积最小时,求面积的比.

查看答案和解析>>

同步练习册答案