精英家教网 > 高中数学 > 题目详情

【题目】函数f(x)= (x2﹣9)的单调递增区间为(
A.(0,+∞)
B.(﹣∞,0)
C.(3,+∞)
D.(﹣∞,﹣3)

【答案】D
【解析】解:由x2﹣9>0解得x>3或x<﹣3,即函数的定义域为{x|x>3或x<﹣3},
设t=x2﹣9,则函数y= t为减函数,
根据复合函数单调性之间的关系知要求函数f(x)的单调递增区间,
即求函数t=x2﹣9的递减区间,
∵t=x2﹣9,递减区间为(﹣∞,﹣3),
则函数f(x)的递增区间为(﹣∞,﹣3),
故选:D
【考点精析】解答此题的关键在于理解函数的单调性的相关知识,掌握注意:函数的单调性是函数的局部性质;函数的单调性还有单调不增,和单调不减两种,以及对复合函数单调性的判断方法的理解,了解复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 ,其中a∈R,若对任意的非零的实数x1 , 存在唯一的非零的实数x2(x2≠x1),使得f(x2)=f(x1)成立,则k的最小值为(
A.
B.5
C.6
D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)判断并证明函数f(x)的奇偶性
(2)判断并证明当x∈(﹣1,1)时函数f(x)的单调性;
(3)在(2)成立的条件下,解不等式f(2x﹣1)+f(x)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知幂函数f(x)=(m2﹣5m+7)xm1(m∈R)为偶函数.
(1)求 的值;
(2)若f(2a+1)=f(a),求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】100名学生报名参加A、B两个课外活动小组,报名参加A组的人数是全体学生人数的 ,报名参加B组的人数比报名参加A组的人数多3,两组都没报名的人数是同时报名参加A、B两组人数的 多1,求同时报名参加A、B两组人数(
A.36
B.13
C.24
D.27

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,梯形中, , 分别为的中点,对于常数,在梯形的四条边上恰好有8个不同的点,使得成立,则实数的取值范围是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,图象(折线OEFPMN)描述了某汽车在行驶过程中速度与时间的函数关系,下列说法中错误的是(
A.第3分时汽车的速度是40千米/时
B.第12分时汽车的速度是0千米/时
C.从第3分到第6分,汽车行驶了120千米
D.从第9分到第12分,汽车的速度从60千米/时减少到0千米/时

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知幂函数y=xm22m3(m∈Z)的图象与x , y轴都无公共点,且,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)若,求的单调区间;()若有最大值3,求的值;()若的值域是,求的取值范围。

查看答案和解析>>

同步练习册答案