精英家教网 > 高中数学 > 题目详情
已知F1、F2为椭圆E的左右两个焦点,抛物线C以F1为顶点,F2为焦点,设P为椭圆与抛物线的一个交点,如果椭圆离心率为e,且|PF1|=e|PF2|则e的值为( )
A.
B.
C.
D.
【答案】分析:先根据抛物线定义可知|PF1|=e|PF2|=e(到抛物线准线的距离)推断出抛物线的准线与椭圆的准线重合,进而分别表示出抛物线和椭圆的准线方程,使其相等求得a和c的关系,则椭圆的离心率可得.
解答:解:由椭圆第二定义是|PF1|=e(x+
  由抛物线的定义可知到焦点与准线的距离相等|PF1|=e|PF2|=e(到抛物线准线的距离)
∴抛物线的准线与椭圆的准线重合,依题意可知抛物线的准线方程为x=-3c
   椭圆准线为x=--
=3c,即a2=3c2
∴e==
故选C
点评:本题主要考查了椭圆的应用.解题的关键是判断出椭圆和抛物线的准线重合.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知F1,F2为椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的两个焦点,过F2作椭圆的弦AB,若△AF1B的周长为16,椭圆的离心率e=
3
2
,则椭圆的方程为(  )
A、
x2
4
+
y2
3
=1
B、
x2
16
+
y2
3
=1
C、
x2
16
+
y2
4
=1
D、
x2
16
+
y2
12
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2为椭圆E的两个左右焦点,抛物线C以F1为顶点,F2为焦点,设P为椭圆与抛物线的一个交点,如果椭圆离心率e满足|PF1|=e|PF2|,则e的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2为椭圆
x2
25
+
y2
9
=1
的两个焦点,点P是椭圆上的一个动点,则|PF1|•|PF2|的最小值是
9
9

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2为椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的焦点,B为椭圆短轴的一个端点,
BF1
BF2
1
2
F1F2
2
则椭圆的离心率的取值范围是
(0,
1
2
]
(0,
1
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•荆州模拟)已知F1、F2为椭圆C:
x2
m+1
+
y2
m
=1的两个焦点,P为椭圆上的动点,则△F1PF2面积的最大值为2,则椭圆的离心率e为(  )

查看答案和解析>>

同步练习册答案