如图,已知椭圆的右焦点为,点是椭圆上任意一点,圆是以为直径的圆.
(1)若圆过原点,求圆的方程;
(2)写出一个定圆的方程,使得无论点在椭圆的什么位置,该定圆总与圆相切,请写出你的探究过程.
(1)或;(2).
【解析】
试题分析:(1)因为是圆的直径,所以当圆过原点时,一定有,由此可确定点的位置并进一步求出圆的标准方程;
(2)设圆M的半径为,连结,显然有
根据椭圆的标准方程知,
所以,从而找到符合条件的定圆.
【解析】
(1)解法一:因为圆过原点,所以,所以是椭圆的短轴顶点,的坐标是或,于是点的坐标为或,
易求圆的半径为
所以圆的方程为或 6分
解法二:设,因为圆过原点,所以
所以,所以,所以点
于是点的坐标为或,易求圆的半径
所以圆的方程为或 6分
(2)以原点为圆心,5为半径的定圆始终与圆相内切,定圆的方程为 8分
探究过程为:设圆的半径为,定圆的半径为,
因为,
所以当原点为定圆圆心,半径时,定圆始终与圆相内切. (13分)
考点:1、椭圆的定义与标准方程;2、圆的定义与标准方程.
科目:高中数学 来源:2013-2014学年河北省高三年级模拟考试理科数学试卷(解析版) 题型:解答题
在直角坐标系xOy中,直线l的参数方程为(t为参数,0≤α<π)。以原点为极点,x轴的正半轴为极轴建立极坐标系。已知曲线C的极坐标方程为
ρcos2θ=4sinθ。
(1)求直线l与曲线C的平面直角坐标方程;
(2)设直线l与曲线C交于不同的两点A、B,若,求α的值。
查看答案和解析>>
科目:高中数学 来源:2013-2014学年河北省高三年级模拟考试文科数学试卷(解析版) 题型:选择题
方体ABCD-A1B1C1D1中,E为棱BB1的中点(如图1),用过点A,E,C1的平面截去该正方体的上半部分,则剩余几何体的左视图为
查看答案和解析>>
科目:高中数学 来源:2013-2014学年江西省鹰潭市高三第二次模拟考试理科数学试卷(解析版) 题型:选择题
下列四个命题:
①利用计算机产生0~1之间的均匀随机数,则事件“”发生的概率为;
②“”是“或”的充分不必要条件;
③命题“在中,若,则为等腰三角形”的否命题为真命题;
④如果平面不垂直于平面,那么平面内一定不存在直线垂直于平面。
其中说法正确的个数是( )
A.0个 B.1个 C.2个 D.3个
查看答案和解析>>
科目:高中数学 来源:2013-2014学年江西省鹰潭市高三第二次模拟考试文科数学试卷(解析版) 题型:选择题
表示不超过的最大整数,例如:.
依此规律,那么( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年江西省盟校高三第一次联考理科数学试卷(解析版) 题型:解答题
过双曲线的左焦点,作倾斜角为的直线交该双曲线右支于点,若,且,则双曲线的离心率为__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com