精英家教网 > 高中数学 > 题目详情
长方体的长、宽、高分别为a,b,c,对角线长为l,则下列结论正确的是      (所有正确的序号都写上)。
(1);(2);(3);(4)
(1)(2)(4)
本题属开放性试题,这类题型仍是高考的热点问题,要熟练把握。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知正方形和矩形所在的平面互相垂直,

是线段的中点.
(1)求证∥平面
(2)试在线段上确定一点,使得所成的角是.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,四棱锥的底面为直角梯形,底面的中点.
(Ⅰ)求证:平面平面
(Ⅱ)求直线与平面所成的角;
(Ⅲ)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
(注意:在试题卷上作答无效)
四棱锥中,底面为矩形,侧面底面
(Ⅰ)证明:
(Ⅱ)设与平面所成的角为,求二面角的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图直棱柱ABC-A1B1C1中AB=,AC=3,BC=,D是A1C的中点E是侧棱BB1上的一动点。
(1)当E是BB1的中点时,证明:DE//平面A1B1C1
(2)求的值
(3)在棱 BB1上是否存在点E,使二面角E-A1C-C是直二面角?若存在求的值,不存在则说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在△ABC中,的垂直平分线分别交AB,AC于E,E(图一),沿DE将△ADE折起,使得平面ADE⊥平面BDEC(图二)

(1)若F是AB的中点,求证:平面ACD⊥平面ADE
(2)P是AC上任意一点,求证:平面ACD⊥平面PBE
(3)P是AC上一点,且AC⊥平面PBE,求二面角P-BE-C的大小

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

正方体,的棱长为1,的中点,则下列五个命题:
①点到平面,的距离为
②直线与平面,所成的角等于
③空间四边形,在正方体六个面内形成六个射影,其面积的最小值是
所成的角
⑤二面角的大小为 
其中真命题是                     。(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

连结球面上两点的线段称为球的弦。半径为4的球的两条弦的长度分别等于分别为的中点,每条弦的两端都在球面上运动,有下列四个命题:
①弦可能相交于点        ②弦可能相交于点
的最大值为5                    ④的最小值为1
其中真命题的个数为
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题共13分)
已知如图(1),正三角形ABC的边长为2a,CDAB边上的高,EF分别是AC
BC边上的点,且满足,现将△ABC沿CD翻折成直二面角A-DC-B,如图(2).
(Ⅰ) 试判断翻折后直线AB与平面DEF的位置关系,并说明理由
(Ⅱ) 求二面角B-AC-D的平面角的正切值.
 
图(1)                  图(2)

查看答案和解析>>

同步练习册答案