精英家教网 > 高中数学 > 题目详情
函数f(x)是R上的奇函数,且x>0时,f(x)=2x,则x<0时,f(x)=
 
考点:函数解析式的求解及常用方法
专题:函数的性质及应用
分析:本题可以利用函数的奇偶性,将自变量从小于0转化为大于0,然后利用已知函数的解析式,得到本题结论.
解答: 解:∵函数f(x)是R上的奇函数,
∴f(-x)=-f(x).
当x<0时,-x>0,
f(x)=-f(-x)=-2-x
故答案为:-2-x
点评:本题考查了函数的奇偶性,本题难度不大,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线y=k(x-m)与抛物线y2=2px(p>0)交于A、B两点,且OA⊥OB,OD⊥AB于点D,若动点D的坐标满足方程x2+y2-4x=0,则m等于(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

如果满足B=30°,AC=6,BC=k的△ABC恰有一个,那么k的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

将号码分别为1,2,3,4的四张完全相同的纸片放入一口袋中,甲从袋中摸出一个纸片,其号码为a,放回后,乙从此口袋中再摸出一纸片,其号码为b,则使不等式a-2b+1<0成立的事件发生的概率为(  )
A、
1
8
B、
3
16
C、
5
8
D、
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

对于任意实数x,符号[x]表示x的整数部分,即[x]是不超过x的最大整数,例如[2]=2;[2.1]=2;[-2.2]=-3,这个函数[x]叫做“取整函数”,它在数学本身和生产实践中有广泛的应用,那么[log21]+[log22]+[log23]+…+[log232]的值为(  )
A、15B、45
C、103D、258

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂共有10台机器,生产一种仪器元件,由于受生产能力和技术水平等因素限制,会产生一定数量的次品.根据经验知道,若每台机器产生的次品数P(万件)与每台机器的日产量x(万件)(4≤x≤10)之间满足关系:P=
1
10
x2-
77
15
lnx+3
.已知每生产1万件合格的元件可以盈利2万元,但每产生1万件次品将亏损1万元.(利润=盈利-亏损)
(1)试将该工厂每天生产这种元件所获得的利润y(万元)表示为x的函数;
(2)当每台机器的日产量x(万件)为多少时所获得的利润最大,最大利润为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,已知F1、F2分别是椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点,A、B分别是椭圆E的左、右顶点,且
AF2
=5
F2B

(1)求椭圆E的离心率;
(2)已知点D(1,0)为线段OF2的中点,M为椭圆E上的动点(异于点A、B),连接MF1并延长交椭圆E于点N,连接MD、ND并分别延长交椭圆E于点P、Q,连接PQ,设直线MN、PQ的斜率存在且分别为k1、k2,试问是否存在常数λ,使得k1+λk2=0恒成立?若存在,求出λ的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

点M是曲线
x2
25
+
y2
9
=1(x≠±5)上任意一点,点A,B的坐标分别为(-5,0),(5,0),直线AM与直线BM的斜率之积为(  )
A、-
9
25
B、
9
25
C、-
3
5
D、
3
5

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式
(x-2)(10-x)
(x-1)
≥0
的解集是(  )
A、{x|2≤x≤10或x<1}
B、{x|2≤x≤10或x≤1}
C、{x|1<x≤2或x≥10}
D、{x|1≤x≤2或x≥10}

查看答案和解析>>

同步练习册答案