精英家教网 > 高中数学 > 题目详情
计算:sin(-810°)+tan765°+tan1125°+cos(-360°).
考点:运用诱导公式化简求值
专题:三角函数的求值
分析:由条件利用诱导公式化简可得所给式子的值,可得结果.
解答: 解:sin(-810°)+tan765°+tan1125°+cos(-360°)=sin(-720°-90°)+tan(720°+45°)+tan(3×360°+45°)+cos(-360°)
=-sin90°+tan45°+tan45°+cos0°=-1+1+1+1=2.
点评:本题主要考查应用诱导公式化简三角函数式,要特别注意符号的选取,这是解题的易错点,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求函数y=log 
1
4
(1-x)+log 
1
4
(x+3)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率是
1
2
,其左、右顶点分别为A1,A2,B为短轴的一个端点,△A1BA2的面积为2
3

(1)求椭圆C的标准方程;
(2)直线l:x=2
2
与x轴交于点D,点P是椭圆C上异于A1,A2的动点,直线A1P,A2P分别交直线l于E,F两点,证明:|DE|•|DE|恒为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的长轴长为4,离心率为
1
2
,左右焦点分别为F1,F2
(1)求椭圆的方程;
(2)过F2的直线l与椭圆交于不同的两点M、N,求△F1MN面积最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=6,|
b
|=8,且|
a
+
b
|=|
a
-
b
|,求|
a
-
b
|.

查看答案和解析>>

科目:高中数学 来源: 题型:

为了检查某市的教育实践活动的落实情况,现从编号依次为001到380的380个单位中,用系统抽样的方法,抽取2n-1个单位进行检查,已知本次抽样中,所抽取的编号之和为3040,且第n个编号为160,则所抽的单位数共有(  )
A、13个B、15个
C、17个D、19个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题:若a>c,b>c,则a+b>2c.写出该命题的逆,否命题并判断真假.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2分别是椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左右焦点,直线x=-
a2
c
与x轴相交于点N,并且满足
F1F2
=2
NF1
,|
F1F2
|=2,设A,B是上半椭圆上满足
NA
NB
,其中λ∈[
1
5
1
3
].
(1)求此椭圆的方程及直线AB的斜率的取值范围;
(2)过A,B两点分别作此椭圆的切线,两切线相交于一点P,求证:点P在一条定直线上,并求点P的纵坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设过直线l的平面α截球的截面圆的半径为
3
,球心到截面圆的圆心距离为5,则球O的表面积为(  )
A、4πB、16π
C、28πD、112π

查看答案和解析>>

同步练习册答案