如图,已知椭圆的离心率为,以该椭圆上的点和椭圆的左右焦点F1、F2为顶点的三角形的周长为.一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的焦点分别为A、B和C、D.
(Ⅰ)求椭圆和双曲线的标准方程
(Ⅱ)设直线PF1、PF2的斜率分别为k1、k2,证明:k1·k2=1
(Ⅲ)是否存在常数λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?
若存在,求λ的值,若不存在,请说明理由.
科目:高中数学 来源: 题型:
(本小题满分12分)
如图,已知椭圆的离心率为,以该椭圆上的点和椭圆的左、右焦点为顶点的三角形的周长为.一等轴双曲线的顶点是该椭圆的焦点,设为该双曲线上异于顶点的任一点,直线和与椭圆的交点分别为和.
(Ⅰ)求椭圆和双曲线的标准方程;
(Ⅱ)设直线、的斜率分别为、,证明;
(Ⅲ)是否存在常数,使得恒成立?若存在,求的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分13分)
如图,已知椭圆的离心率为,以该椭圆上的点和椭圆的
左、右焦点为顶点的三角形的周长为.一等轴双曲线的顶点是该椭
圆的焦点,设为该双曲线上异于顶点的任一点,直线和与椭圆的交点
分别 为和
(Ⅰ)求椭圆和双曲线的标准方程;
(Ⅱ)设直线、的斜率分别为、,证明;
(Ⅲ)是否存在常数,使得恒成立?
若存在,求的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源:2012届山西大学附中高三4月月考理科数学试卷(解析版) 题型:解答题
(本小题满分12分)如图,已知椭圆的离心率为,以该椭圆上的点和椭圆的左、右焦点为顶点的三角形的周长为.一等轴双曲线的顶点是该椭圆的焦点,设为该双曲线上异于顶点的任一点,直线和与椭圆的交点分别为和.
(Ⅰ)求椭圆和双曲线的标准方程;
(Ⅱ)设直线、的斜率分别为、,证明;
(Ⅲ)是否存在常数,使得恒成立?若存在,求的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源:2013届广东省高二下期中文科数学试卷(解析版) 题型:解答题
如图,已知椭圆的离心率为,且经过点平行于的直线在轴上的截距为,与椭圆有A、B两个
不同的交点
(Ⅰ) 求椭圆的方程;
(Ⅱ) 求的取值范围;
(III)求证:直线、与轴始终围成一个等腰三角形.
查看答案和解析>>
科目:高中数学 来源:2013届度黑龙江龙东地区第一学期高二期末理科数学试卷 题型:解答题
如图,已知椭圆的离心率为,以该椭圆上的点和椭圆的左右焦点F1、F2为顶点的三角形的周长为。一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的焦点分别为A、B和C、D。
(Ⅰ)求椭圆和双曲线的标准方程
(Ⅱ)设直线PF1、PF2的斜率分别为k1、k2,证明:k1·k2=1
(Ⅲ)是否存在常数,使得|AB|+|CD|=|AB|·|CD|恒成立?若存在,求的值,若不存在,请说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com