精英家教网 > 高中数学 > 题目详情

【题目】已知函数fx)=x|x-a|+bxabR).

(Ⅰ)当b=-1时,函数fx)恰有两个不同的零点,求实数a的值;

(Ⅱ)当b=1时,

①若对于任意x∈[1,3],恒有fx)≤2x2,求a的取值范围;

②若a≥2,求函数fx)在区间[0,2]上的最大值ga).

【答案】(Ⅰ)a=±1(Ⅱ)①a=0②ga)=

【解析】

(Ⅰ)求得b=-1时,f(x)的解析式,由f(x)=0,解方程即可得到所求a的值;

(Ⅱ)当b=1时,f(x)=x|x-a|+x,

①由题意可得|x-a|+1≤2x,即|x-a|≤2x-1,即有1-2x≤x-a≤2x-1,即1-x≤-a≤x-1,由x的范围,结合恒成立思想可得a的范围;

②求得f(x)的分段函数形式,讨论2≤a<3时,f(x)的单调性和最值,即可得到所求最大值.

(Ⅰ)当b=-1时,fx=x|x-a|-x=x|x-a|-1),

fx=0,解得x=0|x-a|=1

|x-a|=1,解得x=a+1x=a-1

fx)恰有两个不同的零点且a+1≠a-1

可得a+1=0a-1=0,得a=±1

(Ⅱ)当b=1时,fx=x|x-a|+x

①对于任意x∈[13],恒有fx≤2x2

|x-a|+1≤2x,即|x-a|≤2x-1

即有1-2x≤x-a≤2x-1,即1-x≤-a≤x-1

x∈[13]时,1-x∈[-20]x-1∈[02]

可得0≤-a≤0,即a=0

fx==

2≤a3时,2≤a

这时y=fx)在[0]上单调递增,在[2]上单调递减,

此时ga=f=

a≥3时,≥2y=fx)在[02]上单调递增,

此时ga=f2=2a-2

综上所述,ga=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,曲线y=f(x)在点x=e2处的切线与直线x﹣2y+e=0平行.
(1)若函数g(x)= f(x)﹣ax在(1,+∞)上是减函数,求实数a的最小值;
(2)若函数F(x)=f(x)﹣ 无零点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如表:

年份

2007

2008

2009

2010

2011

2014

2013

年份代号t

1

2

3

4

5

6

7

人均纯收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9


(1)求y关于t的线性回归方程;
(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘估计公式分别为: = =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知不过第二象限的直线lax-y-4=0与圆x2+(y-1)2=5相切.

(1)求直线l的方程;

(2)若直线l1过点(3,-1)且与直线l平行,直线l2与直线l1关于直线y=1对称,求直线l2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,AB=BC=2,∠ABC=120°.若平面ABC外的点P和线段AC上的点D,满足PD=DA,PB=BA,则四面体PBCD的体积的最大值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数, ),以原点为极点, 轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为

(1)求曲线的直角坐标方程;

(2)当有两个公共点时,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列满足|an |≤1,n∈N*
(1)求证:|an|≥2n1(|a1|﹣2)(n∈N*
(2)若|an|≤( n , n∈N* , 证明:|an|≤2,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性 ;

(2)若对任意恒成立,求实数的取值范围;

(3)当时,若函数有两个极值点,求

的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知1是函数f(x)=ax2+bx+c(a>b>c)的一个零点,若存在实数x0.使得f(x0)<0.则f(x)的另一个零点可能是(  )

A. B. C. D.

查看答案和解析>>

同步练习册答案