精英家教网 > 高中数学 > 题目详情

【题目】(本小题满分12分)

已知函数,函数.

(Ⅰ)求函数的单调区间;

(Ⅱ)若不等式上恒成立,求实数a的取值范围;

(Ⅲ)若,求证:不等式: .

【答案】(1)略(2) (3)略

【解析】试题分析:对函数求导,讨论,确定单调区间和单调性;作差构造新函数,利用导数

判断函数的单调性,根据不等式恒成立条件,求出的范围;借助第二步的结论,证明不等式.

试题解析:

(Ⅰ)

时,增区间,无减区间

时,增区间,减区间

(Ⅱ)

上恒成立

,考虑到

,在上为增函数

时,

上为增函数, 恒成立

时, 上为增函数

,在上, 递减,

,这时不合题意,

综上所述,

(Ⅲ)要证明在上,

只需证明

由(Ⅱ)当a=0时,在上, 恒成立

再令

上, 递增,所以

,相加,得

所以原不等式成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设S,T是R的两个非空子集,如果存在一个从S到T的函数y=f(x)满足:(i)T={f(x)|x∈S};(ii)对任意x1 , x2∈S,当x1<x2时,恒有f(x1)<f(x2),那么称这两个集合“保序同构”,以下集合对不是“保序同构”的是(
A.A=N* , B=N
B.A={x|﹣1≤x≤3},B={x|x=﹣8或0<x≤10}
C.A={x|0<x<1},B=R
D.A=Z,B=Q

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某品牌手机公司生产某款手机的年固定成本为40万美元,每生产1万部还需另投入16万美元.设公司一年内共生产该款手机x万部并全部销售完,每万部的销售收入为R(x)万美元,且R(x)=
(1)写出年利润f(x)(万美元)关于年产量x(万部)的函数解析式;
(2)当年产量为多少万部时,公司在该款手机的生产中所获得的利润最大?并求出最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)设函数.

(Ⅰ)讨论函数的单调性;

(Ⅱ)当函数有最大值且最大值大于时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学从区间[﹣1,1]随机抽取2n个数x1 , x2 , …,xn , y1 , y2 , …,yn , 构成n个数对(x1 , y1),(x2 , y2),…(xn , yn),该同学用随机模拟的方法估计n个数对中两数的平方和小于1(即落在以原点为圆心,1为半径的圆内)的个数,则满足上述条件的数对约有个.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

已知四棱柱的底面是边长为的菱形,且 平面 ,设的中点。

(Ⅰ)求证: 平面

(Ⅱ)点在线段上,且平面

求平面和平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知曲线C1的参数方程为 (φ为参数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=4 cosθ.
(1)求C1与C2交点的直角坐标;
(2)已知曲线C3的参数方程为 (0≤α<π,t为参数,且t≠0),C3与C1相交于点P,C2与C3相交于点Q,且|PQ|=8,求α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中.

(1)讨论函数极值点的个数,并说明理由;

(2)若成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列 的各项均为正整数,对于任意n∈N* , 都有 成立,且
(1)求 的值;
(2)猜想数列 的通项公式,并给出证明.

查看答案和解析>>

同步练习册答案